Triangles and Elliptic Curves. IV

By Takashi ONO
Department of Mathematics, The Johns Hopkins University, U.S.A. (Communicated by shokichi IyANAGA, M. J. A., May 12, 1995)

This is a continuation of my preceding papers [1], [2], [3], which will be referred to as (I), (II), (III) in this paper. As in (II), (III), to each triple (l, m, n) of independent linear forms on \bar{k}^{3}, k being a field of characteristic not 2 and \bar{k} its algebraic closure, we associate a space
(0.1) $T=\left\{t \in \bar{k}^{3}\right.$;

$$
\left.\left(l^{2}-m^{2}\right)\left(m^{2}-n^{2}\right)\left(n^{2}-l^{2}\right) \neq 0\right\}
$$

Since the condition for $t \in T$ in (0.1) is given by a homogeneous polynomial, we can speak of the subset $P(T)$ of the projective plane
(0.2) $\quad P(T)=\left\{[t] \in P^{2}(\bar{k}) ;\right.$

$$
\left.\left(l^{2}-m^{2}\right)\left(m^{2}-n^{2}\right)\left(n^{2}-l^{2}\right) \neq 0\right\}
$$

which is the complement of the complete quadrangle given by six lines $\left(l^{2}-m^{2}\right)\left(m^{2}-n^{2}\right)$ $\left(n^{2}-l^{2}\right)=0$. Since T is the total space of a bundle whose fibres are (affine parts of) elliptic curves in $P^{3}(\bar{k})$, it is natural to think of their images under the canonical map $T \rightarrow P(T)$ given by $t \mapsto[t]$, the homogeneous coordinates for t. In this paper, we shall study this aspect of the space T and show that there is a close relation between certain family of elliptic curves and a single plane conic, over a given field k of rationality. If X denotes a set of geometric objects, we shall denote by $X(K)$ (or by X_{K} occasionally) the subset of X which is rational over K.
§1. Basic diagram. Along with the canonical map $P: T \rightarrow P(T)^{\prime}((0,1),(0,2))$, we consider the diagram:

where

$$
\begin{gather*}
\Omega=\{\omega=(M, N) \in \bar{k} \times \bar{k} \tag{1.2}\\
M=\{\lambda \in \bar{k} ; \lambda \neq 0,1\} \\
p(t)=\left(l^{2}-n^{2}, m^{2}-n^{2}\right), r(\omega)=\frac{N}{M} \tag{1.3}\\
p[t]=r(p(t))=\frac{m^{2}-n^{2}}{l^{2}-n^{2}} \tag{1.4}
\end{gather*}
$$

Since \bar{k} is algebraically closed, p is surjective and hence so is \bar{p}. For an $\omega=(M, N) \in$ Ω, P induces naturally a map

$$
\text { (1.6) } \quad P_{\omega}: p^{-1}(\omega) \rightarrow p^{-1}(r(\omega))
$$

Again since \bar{k} is algebraically closed, we see that P_{ω} is surjective and each fibre is of the form $\{ \pm t\}, t \in T$; in other words, P_{ω} is a covering of degree 2. The fibres of p, p are described as follows. For an $\omega=(M, N)$, let
(1.7) $E(\omega)=\left\{[x] \in P^{3}(\bar{k})\right.$;

$$
\left.x_{0}^{2}+M x_{1}^{2}=x_{2}^{2}, x_{0}^{2}+N x_{1}^{2}=x_{3}^{2}\right\}
$$

this being an elliptic curve in $P^{3}(\bar{k})$ (see e.g., [4] Chap. 4). Deleting four 2 -torsion points out of (1.7), we obtain the affine part of (1.7):
(1.8) $\quad E_{0}(\omega)=\left\{(x, y, z) \in \bar{k}^{3} ; z^{2}+M=x^{2}\right.$,

$$
\left.z^{2}+N=y^{2}\right\}
$$

From (1.4), (1.8), we have a bijection
(1.9) $\quad p^{-1}(\omega) \xrightarrow{\sim} E_{0}(\omega), \omega \in \Omega$, given by $t \mapsto(l(t), m(t), n(t)), t \in p^{-1}(\omega)$.

On the other hand, for a $\lambda \in \Lambda$, let
(1.10) $c(\lambda)=\left\{[x, y, z] \in p^{2}(\bar{k})\right.$;

$$
\left.y^{2}-z^{2}=\lambda\left(x^{2}-z^{2}\right)\right\}
$$ this being a nonsingular conic in $p^{2}(\bar{k})$. Denoting by H the complete quadrangle given by

(1.11) $H=\left\{[x, y, z] \in p^{2}(\bar{k})\right.$;

$$
\left.\left(x^{2}-y^{2}\right)\left(y^{2}-z^{2}\right)\left(z^{2}-x^{2}\right)=0\right\}
$$

we have
(1.12) $C(\lambda) \cap H=\{[1,1,1],[-1,1,1]$,

$$
[1,-1,1],[1,1,-1]\}
$$

which is independent of $\lambda \in \Lambda$.
Deleting these four points from $C(\lambda)$, write
(1.13) $\quad C_{0}(\lambda)=C(\lambda)-H$.

From (1.5), (1.11), (1.12), (1.13), we have a bijection
(1.14) $\quad p^{-1}(\lambda) \xrightarrow{\sim} C_{0}(\lambda)$
given by $[t] \mapsto[l(t), m(t), n(t)]$.
In view of (1.6), (1.9), (1.14), we obtain a covering of degree 2 :
$\pi_{\omega}: E_{0}(\omega) \rightarrow C_{0}\left(\frac{N}{M}\right), \omega=(M, N) \in \Omega$,
given by $(x, y, z) \mapsto[x, y, z]$.

§2. Rationality. We shall consider what will happen to (1.15) if we restrict our attention to any field k of rationality (of characteristic $\neq 2)$. We start with a triple (l, m, n) of independent linear forms defined over k and associate to it the space T defined by (0.1). The diagram (1.1) induces in an obvious way the diagram:

$$
\begin{array}{ccc}
T(k) & \xrightarrow{P_{k}} & P(T)(k) \tag{2.1}\\
p_{k} \downarrow & & \downarrow \tilde{p}_{k} \\
\Omega(k) & \xrightarrow{r_{k}} & \Lambda(k)
\end{array}
$$

For an $\omega \in \Omega(k), P_{k}$ induces naturally a map
(2.2) $\quad P_{\omega, k}: p_{k}^{-1}(\omega) \rightarrow p_{k}^{-1}\left(r_{k}(\omega)\right)$.

This map is not necessarily surjective, although each fibre consists of two points as before. Along with (1.9), (1.14) and (1.15), we have bijections
(2.3) $\quad p_{k}^{-1}(\omega) \xrightarrow{\sim} E_{0}(\omega)(k), \quad \omega \in \Omega(k)$,
(2.4) $\quad \bar{p}_{k}^{-1}(\lambda) \xrightarrow{\sim} C_{0}(\lambda)(k), \quad \lambda \in \Lambda(k)$
and a map

$$
\begin{equation*}
\pi_{\omega, k}: E_{0}(\omega)(k) \rightarrow C_{0}\left(\frac{N}{M}\right)(k), \omega=(M, N) \tag{2.5}
\end{equation*}
$$

For any $\lambda \in \Lambda(k)$, let

$$
\begin{align*}
& \Omega_{\lambda}(k)=r_{k}^{-1}(\lambda)= \tag{2.6}\\
& \\
& \quad\{\omega=(M, N) \in \Omega(k) ; N=\lambda M\}
\end{align*}
$$

This set is identified with k^{\times}by $(M, \lambda M) \leftrightarrow M$ and we denote by $\Omega_{\lambda}(k) /\left(k^{\times}\right)^{2}\left(\approx k^{\times} /\left(k^{\times}\right)^{2}\right)$ a complete set of representatives of $\Omega_{\lambda}(k)$ under the action of the group $\left(k^{\times}\right)^{2}$. Then we have
(2.7) $C_{0}(\lambda)(k)=\underset{\omega \in \Omega_{\lambda}(k) /\left(k^{\star}\right)^{2}}{\cup} \operatorname{Image}\left(\pi_{\omega, k}\right)$, (disjoint).

In fact, (2.5) implies that the right hand side of (2.7) is contained in the left hand side. Conversely, take any point $[t] \in C_{0}(\lambda)(k)$, with $t \in$ k^{3}. Then $y^{2}-z^{2}=\lambda\left(x^{2}-z^{2}\right)$. Since $[t]=$ [ρt] for any $\rho \in k^{\times}$, we may assume that $x^{2}-z^{2}$ $=M \in k^{\times} /\left(k^{\times}\right)^{2}$. Then $y^{2}-z^{2}=\lambda M$. In other words, $t \in E_{0}(\omega)(k)$ with $\omega=(M, \lambda M)$, which shows that the left hand side of (2.7) is contained in the right hand side. Finally take a point $[t] \in$ $\operatorname{Im}\left(\pi_{\omega, k}\right) \cap \operatorname{Im}\left(\pi_{\omega^{\prime}, k}\right)$, with $\omega=(M, \lambda M), \omega^{\prime}=$
$\left(M^{\prime}, \lambda M^{\prime}\right) \in \Omega_{\lambda}(k) /\left(k^{\times}\right)^{2}$. Then we have $M=$ $\rho^{2}\left(x^{2}-z^{2}\right), M^{\prime}=\rho^{2}\left(x^{2}-z^{2}\right)$ for some $\rho, \rho^{\prime} \in$ k^{\times}. Hence $\omega^{\prime}=\left(M^{\prime}, \lambda M^{\prime}\right)={\rho^{\prime 2}}^{2}\left(x^{2}-z^{2}, y^{2}-\right.$ $\left.z^{2}\right)=\left(\rho^{\prime 2} / \rho^{2}\right)\left(\rho^{2}\left(x^{2}-z^{2}\right), \rho^{2}\left(y^{2}-z^{2}\right)\right)=\left(\rho^{\prime} / \rho\right)^{2}$ $(M, \lambda M)=\left(\rho^{\prime} / \rho\right)^{2} \omega$. Since ω, ω^{\prime} are representatives of $\Omega_{\lambda}(k) \bmod \left(k^{\times}\right)^{2}$, we must have $\omega=\omega^{\prime}$, so the union in (2.7) is disjoint,
Q.E.D.

Summarizing the arguments, we restate (2.7) as
(2.8) Theorem. Let k be a field of chacteristic not 2. For $a \lambda \in k, \lambda \neq 0,1$, let $C(\lambda)$ be the plane conic (1.10) and $C_{0}(\lambda)$ the portion of it given by (1.13). For $M \in k^{\times} /\left(k^{\times}\right)^{2}$, let $E(M, \lambda M)$ be the space elliptic curve (1.7) and $E_{0}(M, \lambda M)$ the portion of it given by (1.8). Then we have

$$
C_{0}(\lambda)(k)=\bigcup_{M \in \Omega k^{\star} /\left(k^{\times}\right)^{2}} P\left(E_{0}(M, \lambda M)(k)\right)(\text { disjoint }),
$$

where P is the canonical map $t \mapsto[t], t \in k^{3}-\{0\}$. Furthermore each fibre of P (restricted on $E_{0}(M$, $\lambda M)(k))$ consists of two points.
§3. An example. As an illustrative example of (2.8), let us consider the case $k=\boldsymbol{F}_{q}$, the finite field with q elements, $2 \times q$. Since $\left[k^{\times}\right.$: $\left.\left(k^{\times}\right)^{2}\right]=2$, we choose as M elements 1 and r, r being a generator of the cyclic group k^{\times}. Let λ be an element of k such that $\lambda \neq 0,1$. Let χ be the nontrivial quadratic character of k^{\times}, i.e. the character so t hat $\chi(r)=-1$. Since the conic is given by the ternary form:
(3.1) $\quad C(\lambda): \lambda x^{2}-y^{2}+(1-\lambda) z^{2}=0$,
we have ([5] p. 145, Th. 2E)
(3.2) \# C $(\lambda)(k)=q+1, \quad \# C_{0}(\lambda)(k)=q-3$.

Using character sums, we obtain

$$
\begin{gather*}
\# E_{0}(1, \lambda)(k)=q-3+S_{1}, \tag{3.3}\\
S_{1}=\sum_{x \in k} \chi(x(x+1)(x+\lambda)) \\
\# E_{0}(r, r \lambda)(k)=q-3+S_{r} \tag{3.4}\\
S_{r}=\sum_{x \in k} \chi(x(x+r)(x+r \lambda)) .
\end{gather*}
$$

Since each fibre of P restricted on $E_{0}(M$, $\lambda M)(k)$ consists of two points, we have, by (2.8), (3.3), (3.4),

$$
\begin{equation*}
q-3=\frac{1}{2}\left(q-3+S_{1}+q-3+S_{r}\right) \tag{3.5}
\end{equation*}
$$

and hence

$$
\begin{equation*}
S_{1}+S_{r}=0 \tag{3.6}
\end{equation*}
$$

a relation which can also be verified directly using $\chi(r)=-1$. Since $\# E(1, \lambda)(k)=\# E_{0}(1, \lambda)$ $(k)+4$ and similarly for $E(r, r \lambda)$, we have, from (3.3), (3.4), (3.6),

$$
\begin{equation*}
q+1-\# E(r, r \lambda)\left(\boldsymbol{F}_{q}\right) \tag{3.7}
\end{equation*}
$$

$$
=-\left(q+1-\# E(1, \lambda)\left(\boldsymbol{F}_{q}\right)\right.
$$

Therefore, the formula (2.8) may be viewed as a geometric background for typical relations between elliptic curves which are quadratic twists of each other.

References

[1] T. Ono: Triangles and elliptic curves. Proc. Japan Acad., 70A, 106-108 (1994).
[2] T. Ono: Triangles and elliptic curves. II. Proc. Japan Acad., 70A, 223-225 (1994).
[3] T. Ono: Triangles and elliptic curves. III. Proc. Japan Acad., 70A, 311-314 (1994).
[4] T. Ono: Variations on a Theme of Euler. Plenum, New York (1995).
[5] W. M. Schmidt: Equations over Finite Fields. An Elementary Approach. LNM 536, Springer, Berlin, Heidelberg, New York (1976).

