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Abstract: To study the orbit structures of cellular dynamics, one have to study the en-

tropy decreasing factor maps over some sofic systems. It is difficult to analyze the structure
of these factor maps because the inverse image of almost every point is uncountable. In this
paper, the author proposes a function called the degree function, a generalization of the degree
of factor maps in finite to one cases, which indicates the exponential rate of the number of the
inverse image of a word. Using the degree function, we get upper bounds of decreasing in spa-
tial entropies and some relations.

1. Introduction and the background. It is
well known that the cellular automata contains
various orbit behaviors although its definition is
simple. Given

Lattice. L, often using D-dimensional lat-
tice Z.

Cellular state space, fix a finite set
(alphabet) A, for example {0,1}

Configuration space. X AL, or a sofic sys-
tem (see section 2)

Neighborhood. a finite set A of lattice con-
taining the origin

Interaction. a map f" A-’ A (called a loc-
al map)
its dynamics :X--, X is defined (rX)s f(xt: t

sA) for all x X where at is the translation
from origin to t L.

The notion of cellular automata has been
recognized as an important model of "self orga-
nization". In the late forties J. yon Neumann in-
troduced the "29 states self reproducing auto-
mata", which is the origin of this stream [4].

But the universe seems to be more attractive
from the viewpoint of dynamical systems theory.
In the early eighties S. Wolfram [5] developed his
numerical research on one-dimensional cellular
automata as the target of dynamical systems and
statistical mechanics. However, not so many re-
sults are obtained from mathematical viewpoint,
especially from ergodic theory. In the present re-
port, we call cellular automata over one-
dimensional lattice Z as cellular dynamics.

The cellular dynamics are continuous maps
with shift commuting property. Those are factor
maps over sofic systems. When a factor map is
surjective on the configuration space, it is well
known that the factor map is boundedly finite to
one [2]. These cases are deeply studied from the
viewpoint of the isomorphism problem between
topological Markov shifts [3].

But the case of not surjective, the topolo-
gical entropy decreases. In these cases, the factor
maps are uncountably infinite to one [2]. It is

very difficult to use the standard tools that we
have already known on maps of intervals and so
on. In the present paper we introduce the degree
function which is the number of n-word’s in-
verse images. Then there are some relations be-
tween the degree function and spatial entropies
as shown in section 4. We announce the results
and the proofs will be published elsewhere.

The author would like to thank Professor
Yoichiro Takahashi for fruitful discussions and
constant encouragement, and Professors Michiko
Yuri and Satoshi Takahashi for their helpful
advice.

2. Notations. Let A be a finite set and a
Athe shift transformation on {x (X).N

X. A}, i.e., (ax), xn+ (n N). The shift
transformation on A" defined in a similar way. A
pair (X, ) consisting of a a-invariant set X and
the restriction of to X, denoted again by a, is
called a (one-sided or two-sided) shift. If A is en-
dowed with a topology and X is compact, then it
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is called a topological shift or a subshift. The fol-
lowing notations are used in this paper:
Wn (X) {xoxlx2"" xn_ ;x (xn) X} (n-word

set),

W(X) U Wn(X) (word set of X).

For a word w a an An ]wl n (length
of w), [w] {x X;xo’’’Xn_ w} (cylinder
set). For a subset W of the union U n=A
[w]= u [w],

M(W) {x- (xn); (Xi+n)n> 0 [W] for any i}.
If a shift (X, a) satisfies X M(W) with

W Wp+(X) then, (X, a) is called a p-Markov
shift or simply a Markov shift.

Let (X, a) be a subshift and n be a positive
integer. Then a subshift (X Inl, a)is called its
higher block system of n-block system if X Inl

is de-
fied by

X {(x,..., x+_)z (x)z X},
and (X Inl, (7) is topologically conjugate to (X, (7)
for all n N.

Now, the shift homomorphisms are intro-
duced, which are the shift-commuting continuous
maps and are often called factor maps.

Theorem 2.1. [2] Let (X, (7) and (Y, (7) be

subshifts over alphabets Ax and Ar respectively, and
a map v" X-- Y be continuous and assume v(7-

av. Then there exist a finite interval A (k,. k
+ p} and a map f "Ax+ Ar such that (vx)i

f(x,+, ..., x++).
dP+nFor each n N, the n-block map fn"*x

A, is defined from the local map f so that
fn(wi Wp+n) f(wi Wp+l) f(w2"’’ Wp+2)

f(wn wo+n). Taking higher-block systems,
if necessary, any cellular dynamics can always
be assumed to be one-block defined through a loc-
al map with p 0 in Theorem 2.1.

A subshift (X, ) over an alphabet A is cal-
led a sofic system if there is a Markov shift
(, ) (called a Markov cover of (X, a))and a
surjective factor map zr" X. The factor im-
ages of sofic systems are also sofic systems.

3. Entropy and Gibbs measure. Let (X, (7)
be a subshift, be a (7-invariant probability mea-
sure and a be a finite measurable partition of X.
The metrical entropy for (X, (7, p, a) is given

1
by h (X. (7. c) lim_oo H(a) where H. (a)

,Adu(A)logp(A) and an denotes the re-

-I (n-l)
finement V (7 V V(7 . The metric-
al entropy for (X, a, f) is defined by h,(X,

supa h(X, , ). For two invariant probabil-
ity measures p, v on (X, a), the relative entropy
are defined if the limit exists as follows"

1 tt(C)(C) logh(l ) .-.lim - c v(C)"
Now, we introduce a class of measures called

Bowen type Gibbs measures following [1]. At
first, we think of topologically mixing Markov
shifts, i.e., aperiodic Markov shifts (X, ).

Let C(X) be the set of all continuous func-
tions on X and for U C(X), we denote
vary(U) SUpx,X{I U(x) U(y) ;x y,O <_
i<k} and F(X)-{U C(X);var(U)_<ba,
b>_O,O<_a<l,k>_O}.

Theorem 3.1. [1] For a function U F(X),
there exists an unique shift invariant measure
such that

[.u([Xo Xm_l])
C < exp(-raP(U) SmU(X)) < C and

P(U) h.(X, a) f Udgv

for some constants C > O, C > 0 and SnU(x)
o U(ykx)
We get the same result for topologically mix-

ing sofic systems owing to the existence of the
topologically mixing Markov cover.

4. Main results. In this section, we
assume that factor maps are one-block and that
sofic systems are one-sided without loss of
generality.

Definition 4.1. Let (X, a) and (Y, a) be
two sofic systems and v be a surjective cellular

-1
dynamics from X to Y. Let d(w)
and we call it the degree function.

Proposition 4.2. There exists the limit

ha(Y) lim 1log d(yoy Yn-).

for almost every y Y with respect to any shift in-
variant probability Borel measures. Moreover, the
above limit is independent of the choice of the local
map f

Theorem 4.3. Let be a measure on X which,
attain the maximal entropy, and v be the in-
duced measure by . Suppose ha(y)= 0 for
almost every y in Y. Then is boundedly finite to

-1
one, i.e., supu r # v (y) < oo.

Theorem 4. 4. Let (X, a) and ( Y, a) be two

sofic systems and v" X Y be a surjective cellular
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dynamics. Take an invariant measure 12 and set,
v v 12. Then the following inequality holds:

(X, a) h(Y, a) <_ fh,
Theorem 4.5. Let (X, a) and (Y, a) be

topologically mixing sofic systems and v X - Y
be a surjective cellular dynamics. Take U
F( Y) and let V- v, U F(X). If 12-12v and
v z" 12 then the following equality holds:

h(X, a) h(Y, a) + fhadv.
Theorem 4.6 (Gibbs type variational princi-

ple). Under the same assumption as in Theorem
4., the following equalities hold:

1
log d(w)t2([w])P(V) P(U) _oolim

h(v112v) + fv hadv

max (h(12112v) + f_h
tt:a-inv. y

Theorem 4.7. Let w be a word and y be the
periodic point defined by y www AN. Then
ha(y) w - log/2 (w) where/2 (w) is the maxim-
al eigenvalue for a non-negative integer matrix
A (w) associated with the local map.
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