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23. Algebraic Geometry of Center Curves in the Moduli
Space of the Cubic Maps

By Kiyoko NISHIZAWA*’ and Asako NOJIRI* *)

(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1994)

0. Introduction. In our previous paper [6], we have defined the
so-called center curves BC, and CD,, which are algebraic curves, for the
real cubic maps. The attached figure 1 gives the graphs of these curves for p
=1, 2, 3, 4. Note that these graphs exist only in the first and third quad-
rants. The same holds also for other values p = 5, 6,---.

In the present paper we consider the complex maps. For such a cubic
map g, we have two normal forms; z®— 3Ax + VB, A, B € C. Therefore,
the complex affine conjugacy class of g can be represented by (A, B). The
moduli space, consisting of all affine conjugacy classes of cubic maps, can be
identified with the coordinate space C> = {(4, B)}. For the post-critically
finite complex cubic maps, the center curves CD,, BC, can be defined in the
same way as in [6]. In section 1, we show how the equations of these curves
are obtained by induction on p.

We can embed C’ canonically in P*(C) : (4, B) = (1 : A: B). Then an
affine algebraic curve V, = {(4, B) € C*: h(A, B) = 0} uniquely deter-
mines a projective algebraic curve V={(C:A:B) € P’(C):H(C:A:B)
= 0} in P*(C) such that (4, B) = HQ1:A:B) and VN C* = V,.

Definition. For a center curve V,, the corresponding projective algeb-
raic curve V is called the projective center curve. We denote by PBC, and
PCD,, these curves corresponding to BC, and CD,, respectively.

In sections 2 and 3, we give some properties of these curves from the
viewpoint of algebraic geometry ([1]).

1. The equations of center curves. Let f(x) = z® — 3Ax + VB, with
critical points + yA.
The equation of curve BC1 is obtained as follows:
fWA) — (—=VA) = (—24+ 1)YA+VB =0
f(—vA) —VvA=(2A— 1DVA + VB =0.
Therefore,
BCl:B=ACA - 1"
The equation of curve CD1 is obtained as follows:
fWA) —yA = (—24A—1)YA + VB =0,
f(=VA) — (= VA) = QA+ DYyA + VB =0.
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Therefore,
CD1:B=AQCA+ 1"
The equation of curve BC2 is obtained as follows:
fiWA) — (— VA) = (— 84" + 64+ 1 — 6AB)VA
+ (124 — 34+ 1+ B)YB =0,
fi(— yA) — yA = (8A' — 64 — 1 + 6AB)VA
+ (124°—3A+ 1+ B)YB = 0.
Therefore,
BC2: B® — 124°B* — 6AB* + 2B’ + 48A°B + 24A°B + 21A°B
— 6AB + B — 64A° + 964" — 204° — 124° — A = 0.
The equation of curve CD2 is obtained as follows:
fiWA) — yA = (— 8A* + 64> — 1 — 6AB)VA
+ (124° - 34+ 1 + B)YB =0,
fA—yA) — (— yA) = (8A' — 6A° + 1 + 6AB)VA
+ (124> — 34+ 1+ B)YB = 0.
Thus
B(12A° — 34+ 1+ B)> — A(— 84"+ 64 — 1 — 6AB)* = 0.
Fixed points can be also considered as periodic points of period 2. So, this
curve contains CD1. Dividing the left-hand side of the last equation by the
defining polynomial of CD1, we get the equation of CD2 as follows:
CD2: B? — 8A°B + 4A°B — 5AB + 2B + 16A° — 164°
—124*+ 164> — 44+ 1 = 0.
Suppose now,
fp(M) = Pp\/;( + Qp\/—gy
fp(— \/—Z) = - p\/Z_FQp\/Ey
where P,, @, are polynomials of A, B. Then we have
pP,= AP, + 3BP»—1Q:—1 — 34P,_,,
Q, = 3AP,_Q,_, + BP,_, — 3AQ,_, + 1.
The equation of curve BC, is obtained as follows:
fPGA) — (= VA) = (P, + DVA + QB =0,
f(=VA) —yA=(—P,— VA + QB = 0.
Therefore,
BC,: (P, + 1)’A— Q;B = 0.
The equation of curve CD, is obtained as follows:
(/A — VA = (P, — 1)VA + QB = 0,
f(—=VA) — (= VA) = (— P, + DVA + QB = 0.
Let
$,(A, B) := (P, — 1)’A — QB.
If ¢,(A, B) = 0 is the defining equation of CD,, then we have
¢7,,(A, B) = 13’ ¢,(A, B).
q

Therefore if {q,," " *,q,} is the set of all divisors of p except p, then
CD, : ¢,(4, B) = 3,4, B) /1L 4,(4, B) = 0.

2. The intersection with the line at infinity. Suppose p is given.
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q; G =1, -+, n) will have the same meaning as above. From the preceeding
paragraph, we obtain easily the following lemma.

Lemma. (a) Suppose the defining equation ¢(A, B) of CD, is
(1) ¢A, B) =¢,4,B) +¢,_,(A,B) + -+ + ¢,(A4, B) =0,
where ¢;(A, B) is a homogeneous polynomial of degree i (1 = 0, +,k). Then
$.(A, B) = aA* (a is constant) and k = 3" — Z7_, u(q,), with u(q,) is the
total degree of CD,,.

(b) Let now,

(2) ¢, B) = ¢,(AB" + ¢, ,(AB" ™ + -+ + ¢,(4) = 0.

Then ¢,,(A) is constant and m = 3°™1 — 37_ v(q,) with v(q,) is the degree of
CD,, with respect to B. Moreover, the inequalities £(q;) > v(g;) and k > m are
always satisfied.

(c) If we decompose the defining polynomial of BC, like (1), (2), we obtain
the Wighest term BA* (B is constant), k = 3" as the term corresponding to
¢, (A, B) in (1), and constant X B™, m = 37" as the term corvesponding to
On(A, B) X B" in(2).

We obtain the following theorem from the above lemma.

Theorem 1. Each projective center curve and the line at infinity, L., : C =
0, intersect at the point (0:0:1) only. This point (0:0: 1) is singular and its
multiplicity can be calculated explicitly by the integer p.

Proof. 1t is sufficient to consider the (C, A) affine part of each projec-
tive center curve. Each (C, A) affine part of PCD, and PBC, are, respec-
tively, C* + =) 441 6,(4, O and C°+ Zi,,, ¢.,(4, ), where ¢, and ¢,
are homogeneous polynomials of degree i,d=2 - 3’7 — =7 (u(g) —
v(g)), and e = 237", Therefore, for PCD, (resp. PBC,), (0:0: 1) is singu-
lar with multiplicity d (resp. e).

Remark. PCD1 and PBC1 are both cuspidal cubic. Bul for p = 2, the
point (0:0:1) is not a “simple cusp”, because of the difference between the
degree of the highest term containing A and that rf C. For the definition of
“simple cusp”, see [2]. Morcover, it has only one tangent line L.

3. Case p = 1,2. We get the following theorem about the irreducibil-
ity of each projective center curve, which is based on Kaltofen’s algorithms
on risa-asir (computer algebra system) ([4]).

Theorem 2. Projective center curves PCDi and PBCi (1 = 1,2) are irve-
ducible.

We obtain the estimate for genus g of each projective center curve I,
using the following well-known lemma:

Lemma ([3]). Let I' be an irreducible curve of degree m. Let Sing I' =
{P,, - P} be the set of singular points P; of I'. Let r; be the multiplicity of P;.
Then,

g< (n 1)2(n 2) st r,(r,z D

Theorem 3. The curves PCD1 and PBC1 arve vational. The genus of

PCD2 is not greater than 3. The genus of PBC2 is not greater thawn 9.
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Proof. We can express
PCD, =CD, U (L, N PCD,) =CD, U {(0:0:1)}.
The same decomposition holds for PBC,.

PCD2 is of degree 6. It has one 4-fold point (0:0: 1) and one ordinary
double point (0.25, — 0.4375). Therefore, g < 3. PBC2 is of degree 9. It
has one 6-fold point (0:0: 1) and four ordinary double points as follows:

(— 0.1341351918179714, — 1.37344484910264),

(— 0.5531033117555605, — 0.6288238268413773),

(0.3436192517867655 + 0.3041906503790061 % ¢,

0.6886343379400248 — 0.04267412324347224 % 1),

(0.3436192517867655 — 0.3041906503790061 * ¢,

0.6886343379735695 + 0.04267412329900053 % 7).
Therefore, g < 9.

We would like to state the follwing conjecture.

Conjecture for projective center curves. All projective center curves are
1rreducible. All singular points except (0 2 O : 1) are ordinary double points.
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