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1. Introduction. In this paper we give estimates for large eigenvalues
of SchrOdinger operators A + V with increasing potential V. Let N(2) be
the number of eigenvalues of the Schr0dinger operator less than /. Under
some conditions on V we can prove the asymptotic formula
(1) N(2)
which means that there is a correspondence between each eigenvalue less
than
V(x) < /}. This correspondence is known as the Bohr-Sommerfeld quantiza-
tion rule. A lot of people study the conditions on potentials for the formula
(1), for instance, Feigin [3], Fleckinger [4], Rozenbljum [5], Simon [6], Tachi-
zawa [7], Titchmarsh [8] and so on.

In this paper we give another formulation of this problem. Let A (N
x Z) U {(0,2n’):n’ Z} and B {(m, n):m (ml,... ,ma), n (nx,

..,na), (m, n) A, i 1,...,d}. Our claim is that there is a correspon-
dence between each eigenvalue and each point (27rm, n) for (m, n) B. Let
O..n 127rm + V(n/2) for (m, n) B and {Pk}kN the rearrangement of
{0m,n}(m,,)B in the nondecreasing order. We show that

(2) lim -- 1

under some conditions on V. The formula (2) gives a relation between the
asympototic behavior of eigenvalues and the .symbol of the Schr0dinger oper-
ator, which is a new result.

The class of the potentials V studied in this paper contains slowly in-

creasing ones, for example, V(x) log’"loglxl(largelx[). The formula
(1) is proved in [7] for radial, slowly increasing potentials. But it is not
known whether the formula (1) holds or not for non-radial slowly increasing
potentials. Our theorem gives a new approach to the study of eigenvalues of
Schr(Sdinger operators with slowly increasing potentials.

2. Theorem. We consider potentials V(x) satisfying the following con-
ditions.
(H 1) V C" (Re), Y >- 1, V(x) ’--) cx:, (I x "- c).
(H2) There are positive constants c, 7" such that

Y(x + y) <_ c(1 + y ])rY(x) (x, y e R).
(H3) There is a constant v, 1/2 <_ < 1, such that, for every (a

oV(x) <- c. v(x)
where Ca is a positive constant depending only on c.
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We consider the SchrOdinger operator A + V on Co (Rd) where A
/Oxi. Let L be the selfadjoint realization of B + V in Le(Rd) and

D(L) the domain of L. By the condition (HI), L has only discrete spectrum

11 < Re --< (cf. [21, [81). We define m,n {I 2zcm 12 + g(n/2)} r
for (m, n)

B and fi m,n for /2 Om,n.
We have the following theorem.
Theorem 2.1. Suppose that a real valued function V satisfies the condi-

tions (HI), (H2) and (H3). Then them are positive constants C, K such that

/2- Cfi <- <-/2 + Cfi
for all k >_ K.

As a corollary of Theorem 2.1, we have the following result.
Corollary 2.1. Under the same assumptions as in the previous theorem, we

have

lim /-- 1.
koo /.2 k

3. Outline of the proof of Theorem 1.1. For the proof of Theorem 2.1,
we use the Wilson basis. In [1] Daubechies, Jaffard and Journ discovered a
function (t) which satisfies the following conditions.

(a) (t) is real, even function in (R) and (s) (2 7C) -1/2

fi (t)e-t dt 2((4rs).

(b) There exist 7, C > 0 such that (t) <-- Ce-11 for all t R.
in12(c) Let m,n() Cm{(- 2rrm) + (-- 1)m+n( + 2zm)}e- for

mZ+, n Z, R, where Cm= 1/v for m--> 1 and Co= 1/2. Then
{era,n(w)}<m,) is an orthonormal basis in (R).

Forw’- (1,. .,wa) Ra ma) a
m (ml,..., Z+, n (nl,...,nd)

Za, we define

Cm,n (X) Cml,nl (Xl) X X Cmd,nd (Xd)
We can easily prove that {m,n}(m,n)B is an orthonormal basis in

Le(Rd). We call (bm,n)(m,n) the Wilson basis in Le(R).
We have the following Lemmas.
Lemma 3.1. Suppose that a realvalued function V satisfies the conditions

(H1), (H2) and (H3). Then there is a positive constant C such that
E (f, Cm,n) ]2 (Om,n Cm,n} (L f, f)

(m,n)B

<-- X (f, Cm,n)12 (aim 2f_ Cm,n}
(m,n)eB

for all f D (L) where(’,’) denotes the inner product of L (ga).
Lemma 3.2. Suppose that a real valued function V satisfies the condition

(H 1). The k-th eigenvalue of the selfadjoint operator L is characterized by the fol-
lowing formulas:

supinf((Lu, u) u D(L)., u 1, u+/- M_},
Mk-1

2 inf sup{(Lu, u):llull= 1, u M}
MkCD(L)

where M denotes a k-dimensional subspace of L2(Rd) and inf and sup are
taken over all k 1 and k-dimensional subspaces, respectively.



No. 4] Eigenvalues of Schrtdinger Operators 87

The proof of Lemma 3.2 is given in [9].
For Pk 0m,n we set ,,n. Let Mk be the subspace of L(Rd)

which is spanned by {1,...,e}.
By Lemma 3.1, we have

Cfi <_ inf {(Lu, u) "u D(L), u 1, u M_},
for sufficiently large k.

Hence the first characterization in Lemma 3.2 gives- Cfi
for all sufficiently large k.

Similarly we have
p + Cfi sup{(Lu, u)" u 1, u M}

and we get
+ Crib.

Therefore Theorem 2.1 is proved.
The proof of Lemma 3.1 is given by the following lemma and an

elementary calculus.
Lemma 3.3. Suppose that a real valued function V satisfies the conditions

(H1), (H2) and (H3). For every , fl Z+, there exists a constant C
C(, ) > 0 such that

C
+ +

for all m, m’ Z, n, n’ Z.
In the proof of Lemma 3.3 we use the assumptions on V and the ex-.

ponential decay property of the Wilson basis.
The detail will appear elsewhere.
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