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Note on Global Existence for Axially Symmetric Solutions

of the Euler System

By Taira SHIROTA *) and Taku YANAGISAWA**)

(Communicated by Kiyosi IT6, M.J.A., Dec. 12, 1994)

1. Consider axially symmetric solutions of the 3-D Euler system
(1.1) Otu + (u" I7)u + I7p O, I7.u O, in [0, oo)
(1.2) u’n--0, on [0, oo)
(1.3) u(0, x) Uo(X), for x
Here Y) is assumed to be R, or a bounded domain with sufficiently smooth
boundary which is obtained by rotation about the xa-axis of a simply
connected planar domain lying in the half plane R2+ (x- (x, x2, x)Ix2

0, x --> 0} u u(t, x) (u, u, u) is the velocity, p p(t, x) the
pressure" Uo(X) is the axially symmetric initial velocity.

In cylindrical coordinates r, 0, z, the velocity u is written as u--Cer
-t- fleo -I- 7ez where er-- (cos 0, sin 0, 0), e0 (-- sin 0, cos 0, 0), and

ez-- (0, O, 1). Axial symmetry means that fl--0 and c, )" are independent
of 0.

The global in time existence of axially symmetric solutions to (1.1)-(1,3)
with D R3

was proven by authors Ukhovski and Iudovich [6], Maida [3],
Raymond [4]. In these papers, they have used the assumption, among others,
that (rot uo)r- (Ra), which is automatically satisfied when Uo
Hs(Ra) (s > 7/2).

In the present paper, we will develop our approach for axially symmet-
ric solutions, by proving the following theorem, where the above assumption
is superfluous even if u0 HS(Ra) (5/2 < s -< 7/2). Here we denote by
Hs(Q) the Sobolev space of order s on Q, and also denote by CJ(I ;X) the
set of functions u u(t, x) such that Ou, 0 < _< j, are X-valued
continuous on the interval I.

Theorem. Assume that D is R or a bounded domain with the property
mentioned above. Suppose that u H (f2) is axially symmetric and satisfy that

Uo" n 0 on OD and I7. uo 0 in [2. Then there exists a unique axially
symmetric solution u of (1.1)-(1.3) such that u C([0,
C1([0, oo) Hs-(.Q)). Here we assume that s > 5/2 for the former case or
s 2 3 (integer) for the latter case respectively.

Our devices such as (3.1) and (3.2) below are also useful to show the
corresponding results to the same system with the wider classes of initial
data.

2. In cylindrical coordinates, the vorticity has the form
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(2.1) = I7 X toe, where to #zc-- #7,
and from (1.1) we see that w is governed formally by the equation

-1
(2.2) #tw + aaw + Ow-- r --0.
We remark that (2.2) become (D/Dt) (/r) O, where D/Dt

Now we assume that there exists an axially symmetric solution u of
(1.1)-(1.3) such that u C([0, T);Hs()) C([0, ;Hs-()) for a
given constant T > 0. Then, by virtue of the continuation principle given in

[1], [2] and [5] to prove the Theorem stated above, we have only to show that

Hereafter in this section we shall show certain properties of u in the
cylindrical coordinates. Fix t [0, . Then, since u(t)- (a(t)cos 0,
a(t) sin 0, T(t)) B(), we see that
(2.4) a(t), r(t) e B(D), a(t)r- e B(D).
Here D is a planar domain such that D + and B () is the space of
functions whose j-th derivatives, j i, are continuous and bounded on D.

-1 -1)We remark that Oux+ Ou= Oa+ar Oux= (O,a-- ar sin0-
cos 0. Furthermore by (1.2) and the axial symmetry of the solution u, it
holds that
(2.5) a(t)n + T(t)nz 0 on OD,
where (nr, nz) is the unit outer normal on OD if OD has no corners. If D
has corners, we see that T 0 there.

Now we use the particle trajectory transformation ((t;r, z), (t;r, z))
defined as the solution of

(d/dt)P(t ;r, z) a(t, (t ;r, z), (t ;r, z)),
(2.6) (d/dt)(t r, z) T(t, r(t r, z), Z(t; r, z))

with ((0; r, z), Z(0 r, z)) (r, z) for (r, z) D.
Here and hereafter, we use the notation such that a(t, a(t, r, z) for
any X (rcos 0, rsin 0, z) because of the axis symmetry of u(t,

Then from (2.4), (2.5), and the incompressibility of u

OzT 0), we see that for a fixed t [0,
(2.7) ((t; r, z), (t; r, z)) is a diffeomorphism of D and
(2.8) it preserves the measure rdrdz on D.

3. To obtain (2.3), we need the following lemmas which are proved in
sections 4 and 5.

Lemma 1. For any 6 > O, there exists a positive constant gepengg oly
on such that, for X (r, O, z) Dang t [0, ,

I (t, x) I (t, x- gl- dg
-Yla

(3.1)
+ rx [w(t, l X-- Y[-dY).

-YI>8

From Lemma 1 and (2.2), (2.8) we have
Lemma 2. Let s’, s" be constants such that 2 < s" < 3
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Wo/r LS’(D) LS"(D). Then there exists a constant k depending only on

09o / r [[LS’(D), 090 / r [[Ls,,(D) such that the following estimate holds"
(3.2) In(t, r, z) <_ kr for any (r, z) D, r 0 and t [0,
where o rot Uo.

(Hereafter we use k to denote constants having the same dependence
cited above.)

Not, since o Woeo HS-() and since for Weo, Oxz-
Ow + wr 0 (Ow wr sin Ocos O, the imbedding theorem

(Hs-z Lfor the Sobolev spaces (D) if q22 and s--2>3/2--3/q)
implies that the assumption of Lemma 2 is satisfied, for s > 3/2 + 1.
Therefore from Lemma 2 and (2.6), we see that

kt((t; r, z) re for (r,z) D, r >0 and t [0,
Thus by the remark cited under (2.2) and (2.7) we have

w(t)][z-() e
,

w(0)][z-()for t [0,
so that the desired boundedness (2.3) of w is shown.

4. Proof of Lemma 1. we first consider the case where D Ra. Since
u(t) L(D) and (t) B() Le(D), by the Biot-Savart law, we have
that for 0 N t< T

(4.) a(t, (4)- f. (z z’) x- Y[- ’)cos(0 0 w(t, dY,

where X (rcos 0, rsin 0, Z) and Y= (r’ cos 0’, r’ sin 0’, Z’).
Let X be (r, 0, z). Then by the change of independent variables such as
0’ 0’ + for 0’ (/2, 3/2) we have

a(’, r, z) (4u)- ((r + r" 2rr" cos 0’ +
--/2

’ 0’ z’ -/}(42) (r + r + 2rr’ cos +[z-- )
x (z- z’) cos 0’(., r’, z’)r’dr’dz’dO".

Let 6 > 0 be a constant. Fix the point X (r, 0, z). We denote by C
the circle {(r’ cos 0’, r’ sin 0’, z’) [0 0’ < 2) for each (r’, z’). Then we
divide the configurations of the point X and the circles C into the following
three cases"

0+) The case where there exist two angles 0- such that 0 < 0 +

< , < 0- < 2 and r+ r’- cos20err’+[z-
Then we define C + {Y C[ X- Y[ > 6} and C- {Y
IX- Y[ < 6}. That is, C + {r’cos0, r’sin0’, z’) [0+ < 0’
< 0-} and C- {r’cos0, r’ sin0’, z’) l0 0’< 0 +, 0- < 0’
< 2).

fl) The case where X- Y 6 for any Y C.
) The case where IX-- Y] 6 for any Y C.
Setting = (r’cos(+ 09, r’sin(w+ 09, z’) for /2 < 0’< /2,
<- r, 0, z), we observe that IX-- l I- Y and x-

[-- Y]-] 3IX- [I X-- y i-4. Hence, in the case fl), it follows from
(4.2) that

I(C) 1 (r + r" 2rr" cos 0’ + [z z’ I)-a/(z z’) cos O’dO’lc
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7/2

<_ 6r IX- Y I-adO
lr/2

In the case 7"), we can easily see that I(C) above is estimated by

fclX-YI-’dO’, In the a), since shown that I(C-)case it is readily

<-- f IX- Y[-dO’, it remains to estimate I(C+). The I(C +) when 0 + >_

7r/2 and the I(C’)when 0+< 7r/2 are estimated by IX--Y[-dO’,
because IX- r[ _>IX- Y[ for 7r/2 < 0’ < 7r/2. Here C’--
0’ C-}. On the other hand, I(C+\ C’) is estimated by the same way as in
the case /9). Now it is not difficult to verify the estimate (3.1) in which k de-
pends only on

Next we give the proof of (3.1) when t9 is the bounded domain.
-1

Incompressibility under axial symmetry (i.e., r (rc) + #7"- 0) en-

sures to exist a stream function (0 such for a fixed t
(4.3) c #zb, r7 #(rb) in D
since D is assumed to be simply connected, and from (2.1), (2.4) it follows
that
(4.4) Lb co in D, where Ld2- #r(r-XCr(r)) +
Here by using the curilinear integral along the path appropriately and from
(2.4), (2.5), (4.3) we see that

b(t, r, z) 0 on (D, qa, a,d2, d2 / r, azd2 B(/).
Therefore we obtain that

(flee - H ($2), a,qa / r d2/r" - L (9)
which, together with (2.4), (4.3) (4.4), imply that

(we, v) .() I7 (be) I7 v)
(r(be), rV)(9)+ (z(beo), zV).(9) + (r-o(be),

for any vector v (Y2), hence for any vector v H0(). Thus, noting the
fact that ogeo H-(Y2) C() with 0 < 7" ( 1, we have the following

representation of a in Y2 corresponding to (4.1):

a(t, X) zb(t, r, z) f.o zK(X, Y) cos(0- 0")o9(t, IOdY,

for X (r cos 0, r sin 0, z) with an arbitrary 0.
Here K(X, Y) is the (Dirichlet) Green function of Laplacian on Y2 satisfying
that DxK(X, Y) - c, X y ]--Il for any multi-index
(X :/: Y), where c, is a constant depending only on f and . Furthermore,
introducing the rotation Re defined by (Rf)(X) -f(rcos(O + (p), rsin
(0-t- (p), z) for X- (rsin0, rcos0, z) Y2, we see that (RAu)(X)
A (Ru)(X) for any q. Hence, we obtain that K(R, Y) K(X, R_Y) for

(fl and X, Y 9(X Y). Here, of course, ReX means (Rid)(X).
Therefore, corresponding to the derivation of (4.2) from (4.1), we have

#,K((r, 0, z), Y) cos 0"d0’
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r/2

{zK((r, O, z), Y)
--7/2

8zK((r, O, z), (r" cos (rr + 0’), r’ sin(rr + 0’), z’))} cos 0’ dO"
/2

(SzK((r, O, z), tO zK((-- r, 0, z), 10} cos 0’ dO"
z/2

303

(d/dt) zK((r cos (t), r sin 0 (t), z), Y)d cos 0’ dO"

+ (d/dt) OK((f cos 0- (0, f sin O- (0, z), d cos 0’ dO’,

where 0(0 (t--1)for 0 N tN 1. Then we can get the estimate

(.1) for the bounded domain D, by applying the same rocedure as in the

revious case to the above integrals, and by using the estimates of lDK(X,
for I1 1.. cited above. Therefore in this case the constant in (g.1)

depends only on c for 1,2.
5. Proof of Lemma 2. From (2.2), (2,4), (2.8) (i.e. V’u 0) and by a

certain limit process we have that for q s’ or s" in Lemma 2, t [0, T),

Now let us denote the right-hand side of (3.1) by k x (I1 + Ie). Then,
by taking min(r, 1) for the term I, we see that r’ 2r. So, by (5.1) we

have

(5.2) I const, r R

Here we have taken q, q" such that 1/q + 1/q’ 1, and 5/4 < q < 3/2,
q’ s’ > 3. Next we turn to the estimation of I. By using (5.1) again, we

have

rf (1 (t, I/r’) r’l x Y[-dY
Olx-Yi2a

Y9

(r + r’)[ Yl-d(5 3) const, rll <o/r> II.’.D.
kr r*lYl-a*d +

g kr(r + 8)8-3()-l)/p.
Here we have chosen p, p’ such that 1/p + 1/p’= 1 and 3/2 < p < 2, p’

s" < 3. Note that 1 3(p- 1)/p (3 2p)/p < 0. Then, taking 6
max(r, 1), we obtain I g kr. Finally, let 6 r. Then the remaining terms
in I + I to be estimated are the following:

r I(t, 11 x- Yl-adY (when r < 1),
Or< IX-YI<I

(t, X- Y]-dY >(when 1).
JX-YI<r
Y

The former term is estimated as in (5.3) by taking p, p’ as 5/4 < p < 3/2,
p’ s’. The latter term is also treated as in (5.2) by taking q, q’ as 3/2 < q
< 2, q’ s". So we obtain the estimate (3.2) and complete the proof of Lemma.
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