286 Proc. Japan Acad., 70, Ser. A (1994) [Vol. 70(A),
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Introduction. Let # = 2,3,4, --+. We denote by #5(R""") the space of
k-homogeneous harmonic polynomials on R"" and by N(k, n) the dimen-
sion of PX(R™Y).

Ii [1] and Wada [2] introduced the following function;
(n—1)/2

Z a,r' " K,(», if n is odd,
=

0,(N = w2
> a,r 2K,__(r) if # is even,

=0
where K, (), 4 € R is the modified Bessel function and the constants a,,, !

=0,1,2,---, [n/2] are defined uniquely by
+
NG, k(e + 7 1)2

jo' 21 0, (Ddr= - 2
("3

(see Lemma 2.2 in [2]). Then, they constructed a Plancherel measure on the
complex light cone M= {z€ C"™; =2 +z22+ -+ 22, =0}, and a
Hilbert space of holomorphic functions on M by using the measure. Furth-
ermore, they proved that the Hilbert space is unitarily isomorphic to
L*(S™ under the Fourier transformation, where S” is the #-dimensional real
sphere.

In this paper, we will construct a Hilbert space of harmonic functions on
R"" and prove that the Hilbert space is unitarily isomorphic to a subspace
of L*? (M) under the Fourier transformation, where M is the spherical sphere:

M={iz=x+wyeM;llz|l=1/2 =0xn+ 1)/0xn—1).
The author would like to thank Professor M. Morimoto for his useful advice.

1. A Hilbert space of harmonic functions. Let | x| be the Euclidean
norm on R""'. We denote by &,(R""") the space of harmonic functions on
R™! equipped with the topology of uniform convergence on compact sets.
Define the k-homogeneous harmonic component f, of f € &, (R™) by

W A& =Nk 0D [ r@P,(F el 7)as@, ze ™,

n+1

=Ck,m, k=012,

where z-w = X2 zw,, z, w € C""', P, ,(t) is the Legendre polynomial of
degree k and of dimension # + 1, and dS is the normalized O(n + 1)-
invariant measure on S”.

The following lemmas are known:

Lemma 1. Let f € d,(R"™) and S be the k-homogeneous harmonic com-
ponent of f defined by (1). Then the expansion 2,_, f, converges to f in the topol-
0gy of A, (R™).
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Lemma 2. Letf, € PL(R™) and f, € PL(R"™). If k # I, then
[ /i@ g@asw = o.

We define a measure du on R™ by

Lnﬂf(x)dﬂ(x) = .l:o Lﬂf(rw)dS(w)r"'lpn(r)dr.
Note that p,(#) is not positive but there is R, > 0 such that p,(#) > 0 for
r > R,. The function p, is estimated as follows:
@) {[ 0, | < e P, if nis odd,
lo,(» | =eT"P,,», if n is even,

where P, ,,(#) and P,_,,,,(#) are polynomials of degree [#/2] (see [1], p. 64
and [2], p. 429).

We define a sesquilinear form (f, g) gr+1 by

f, D = [ F@e@du@.

Although 0,(7) is not positive, the sesquilinear form (f, g) g+ is an inner
product on
LA, (R"™™) = {f € o,(R"™) ; | flsgner = (f, £) g2 < 0}
by the following proposition:
Proposition 3. Let f= 3 f, € d,(R""). Then

(f, f)Rn+1 = EO (fk, f;c)Rn+1
=3 Clk, [ f(@f(@)dS@) =0,
k=0 NG

1.e., either both sides are infinite or both sides are finite and equal.

R
Proof. For R > 0 we put Cr(k, n) = f "o (P dr and

I(R) = j(: j;nf(rw)f(rw)dS(a))r""lpn(r)dr.

Since 0,(#) > 0 for » > R,, I(R) is monotone increasing for R > R, and
(f, ) grrr = limg_I(R). By Lemma 1,
> Cr(k, n)

I(R) = Eom (fer fo) g
Similar to the proof of Proposition 2.4 in [1], we can prove

< CR (ky n)

im ZCl m Yo W = F o S e

Q.E.D.

Put
3) ER"™ =(fed,R"™;3C>0,|f@|<ce, vae R™.
By (2), it is easy to see that for s with 0 < s < 1/2

Es(Rn+1) c LzﬂA(Rrwl) c EI/Z(RnH).

For f € o,(R"™") and 0 < t < 1, put f (@) = f(tx).

Lemma 4. (i) f<€ L’4,(R"™") if and only if

flel’4,(R"™),0<t<1 andsup{ll f'llgm;0 <t <1} < oo,

(i) Letf € L’d,(R"™™). Thenlim,; | f— f lgw: = O.
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Proof is similar to that of Lemma 2.8 in [1] and is omitted.
Put

Ez, 9 = fM exp (¢-2)exp(y- O dM (L)

had N(k1 n) k k x . Yy
5 X ey e (o ry)-
Then E,(x, y) is real valued, symmetric and satisfies

° | o° 0

G ABEG 9 =(ot o+ )@ =o.

0x, ox, 0z, ,

By (4), we have the following estimation: there is a constant C such that
|E(x, p) | < Ce”;'”V(ZA;eA”””/2 +{or any A > 0. In particular, E,(z, *) and
E, (-, ) belongto € LA, (R"™).

Theorem 5. Let f € L’d,(R"™"). Then
f@ = Vo B, D = [ f@E @, Ddu@, y € B

By Proposition 3, (4) and (5), an easy computation completes the proof.
We denote by X, the space g’Z(RnH) with the inner product given by

(fu 80 = Clh, m) [ fi()g @) dS(@).
Put Evz, v = e 1y P (1)
Then E, (-, o) € P43(R"™™) € L’d,(R™), and £,() = (/,@), E,(y, ) gr+s
by Theorem 5, (4) and Lemma 2. Thus X, is an N(k, #)-dimensional Hilbert
space with the reproducing kernel E, ,. We can prove that the direct sum de-
composition of the Hilbert space L’s,(R™*") : L’o4,(R™") = ®;_, X,.
Thus we have the following theorem:

Theorem 6. (Lo A(R"H), (, ) gr+1) is a Hilbert space with the reproduc-
ing kernel E,.

2. The Fourier transformation. We denote by L’(M) the space of
square integrable functions on M with the inner product given by

f, Dy = fM F(w) 20y dM(w),

where dM is the normalized O(# + 1)-invariant measure on M.
We define the k-homogeneous component F, of F € L*(M) by

6) F.(2) = 2*N(k, n) fM F(w) (z- @) *dMw), z € C"*.

Then F,|gw: € PLR™"). We denote by P“(M) the space of the
k-homogeneous polynomials on M. For F, € P*(MD, it is known that

F,(2) = 6,2'N(k, n) jﬂ; F,(w) (z-®)'dMw), z € M

(Lemma 1.3 in [2]). We denote by @(M[1]) the space of germs of holomor-
phic functions on M[11 ={z=x+iy€ M;| x| <1/2}. Let L’6(M) be
the closure of @(M[11)|,, in L*(M). Then L*0(M) is a closed subspace of
L*(M) and the following lemma is clear:

Lemma 7. Let F € L*0(M) and F . be the k-homogeneous component of F

(4)
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defined by (6). Then the expansion X, F, converges to F in the topology of
L'o(M).

Lemma 8. (cf. [1, Lemma 1.7] or [2, Lemma 1.4)). Let f, € PX(R™)
and f, € PL(R™™). Then

n+1
N(k, ”)F<n 2 1)>k' ffk(w)g,(w)dM(w)

8 [, @ g dS@) =

r(k+
We define the Fourier transform FF of F € L*(M) by
FF(z) = fM Fw)exp- @) dMw), x € R™.

Then
(7) FF(@) = 2 ; F,(x), z€ R"™.
k=0 N(k, n) k12"
Theorem 9. ¥ :F— FF is a unitary isomorphism of L*OM) onto
Lz'd (Rn+1)‘

Proof. Let F € L*0(M). By Lemmas 7, 8 and (7),
o > (F, F), = Z f F,(w) F, (w) dM (w)

_ Z Clhe, » F.(w) F.(w)
s" N(k, n)k'12* N(k, n)k!12*
(?F f’}’F)Rnﬂ
Thus & is an isometric mapping of L0 (M) into L4 ,(R™*").
Surjectivity of F' can be proven by Proposition 3, Lemmas 2 and 8.

Q.E.D.

dS(w)

Theorem 10. Iff € ES(R™Y), 0 < s <1/2, then
(8) F ) = _/I;nﬂ expx-2) f@dulx), z€ M.

Proof. The right-hand side in (8) converges absolutely by (2) and (3),
which we denote by F(z). Then by the Fubini theorem and Theorem 5,
FF(x) = f(x). Q.E.D.

Corollary 11. Let f € LA, (R™"). Then

F'f(2) = Lim. f exp(x-2) f(tr)du(x), z € M,

(11
where 1.i.m. means the strong convergence in L*(M).
Theorem 12. Let f € L’d,(R"™). Then

— . n—1
F (2 llLTf (js‘nexp(rw z)f(rw)dS(w))r o,(Ndr, z€ M.

Proof is similar to that of Theorem 2.11 in [1] and is omitted.

References

[1] K. ILi: On a Bargmann-type transform and a Hilbert space of holomorphic func-
tions. T6hoku Math. J., 38, 57—69 (1986).

[2] R. Wada: On the Fourier-Borel transformations of analytic functionals on the com-
plex sphere. ibid., 38, 417—-432 (1986).



