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25. Triangles and Elliptic Curves*’

By Takashi ONO

Department of Mathematics, The Johns Hopkins University, U. S. A.
(Communicated by Shokichi IYANAGA, M.J. A., April 12, 1994)

In this paper, we shall obtain a family of infinitely many elliptic curves
defined over an algebraic number field k¥ so that every curve in it has posi-
tive Mordell-Weil rank with respect to k. The construction of curves is very
easy: we have only to replace right triangles in the antique congruent num-
ber problem by arbitrary triangles.

§1. Arbitrary field. Let k be a field of characteristic # 2 and let k be
an algebraic closure of k, fixed once for all. For three elements a, b, ¢ in k,
we shall put

1
(1.1) P=5(a+b —¢),

1
(1.2) Q=g@tbto@+tb—o@—b+taol@a—b—0

1

=1g (@' + 0"+ " — 24°" — 20°¢° — 2c%0%).
One verifies easily that
(1.3) P’ — 4Q = a*b".
Now consider the plane cubic:
P—ab

(1.4) y2=x3+Px2+Qx=x(x+ﬁ2—ﬂ> (x+—~Ta——>.
From (1.3), (1.4), one finds that the cubic is non-singular if and only if
(1.5) ab@ # 0.
We shall call E the elliptic curve given by (1.4) with the condition (1.5). Re-
ferring to standard definitions on Weierstrass equations ([1] p. 46), we find
the values of the discriminant and the j-invariant of E in terms of a, b, c,
P, Q:
(1.6) A= (4abQ)’? = 16D, D being the discriminant of z° + Pz’ + Qz,
(1.7) j=2%(P° —3Q)°/(ab@)’® = 2°(Q + 4’0"’/ (abQ)*.
(1.8) Remark. Although not neccesary in this paper, we mention here a
basic fact. A simple calculation shows that if (a, b, ¢) and (@', b’, ) are
triples in £ with (1.5) such that @’ = 7a, b’ = b, ¢’ = rc with » € k~, then
they have the same j-invariant. Consequently, our construction (a, b, ¢)
- E induces a map: _ _
(1.9) P*(k) - H— k (moduli space of elliptic curves over k),
where H is the union of six linesea=0,b=0,a+b+c=0,a+b—¢c
=0,a—b+c=0anda—b—c=0. _
(1.10) Lemma. Let E be the elliptic curve defined by a, b, ¢ € k with (1.5).

*)
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2 1
Then the point Py = (x,, y,) with x, = (—% c> VY=g c(b® — a®) belongs to E.

In fact, since (0, 0) € E, we can assume that ¢ # 0, and we are re-
duced to check that (5> — a®® = ¢* + 4Pc* + 160Q.

§2. Number field. Let k£ be a finite extension of @ and o be the ring
of integers of k. For a prime ideal p of o, we denote by vy, the order function
on k at p. Let @, b, ¢ be numbers in o satisfying, in addition to (1.5), the fol-
lowing conditions:

(2.1) a+b=c¢ mod?2,

(2.2) ¢# 0 modp for some p| 2.

By (2.1), one sees that P, @ in (1.1), (1.2), respectively, are both in o. Let E.
be the elliptic curve (1.4) defined by a, b, ¢, P, Q. By the Mordell-Weil
theorem the group E(k) of rational points on E is finitely generated and
hence the rank of E(k) makes sense.

(2.3) Theorem. Notation and assumptions being as above, the rank of E (k) is
positive, i.e., the elliptic curve E contains infinitely many rational points over k.

Proof. Let P, = (x,, y,) be the point of E in (1.10). Clearly, P, belongs
to E(k), and we are going to show that the order of P, is not finite. So
assume, on the contrary, that P, is a point of order m = 2. From this point
on, we need extensively the help of a generalization of the Nagell-Lutz
theorem for number fields ([1] p. 220, Theorem 7.1). This theorem, when ap-
plied to our P, = (x,, y,), says:

(a) If m is not a prime power, then x,, Yy, € 0.
(b) Ifm= 0" isa prime power, for each prime ideal q of 0 let

r,= W, /" — " D1 (| |= the integral part).
Then v,(x)) 2 — 27, and v,(y,) = — 37,.
In particular, X, and Y, are q-integral if v, (£) = 0.
Now the assumption (2.2) implies that v, (c) = 0 for a p dividing 2 and so
Y (xo) =—2y, (2) < 0; hence x, € o, Wthh shows that the case (a) does
not occur. As for the case (b), assume first that £ # 2. Take a prime p | 2
with (2.2). Then since v,(#) = 0 we have, by the last italicized statement in
(b), 0 < v, (x) = — 2y,(2) <O, and the case €+ 2 does not occur also.
Therefore it remains to consxder the case where m = 2", n = 1. For a prlme
p| 2 with (2.2), put e = v, (2). If we write e = s2" '+ 7 with 0 < < 2"
we have 7,=s. Hence (b) implies that — 2s <y, (x) = 2v,(0) —
2v,(2) = —2v,(2) = —2¢;s05=2e2> s2"7! which is impossible unless
n=1In this case, however, m = 2, ie., P, = (x, ¥, is of order 2 and so

0=y, = c(b — a%). Therefore b= + a and, by (2.1, c=a+b=0

mod 2, Wthh contradicts (2.2). Thus the last case does not occur, too, Q.E.D.
§3. @ (Comments). (3.1) Right triangles. Let k = ? (5020 =2Z) and
a, b, ¢ be integers # 0 such that ged(a, b, ¢) =1 and a” + b" = ¢". Then

1
one verifies (1.5), (2.1), (2.2). We have P=0 and @ = — Zazbz = —A°

where A is the area of the right triangle with integral sides. The correspond-
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ing Eisy’ = 2> — A’z with 4 = (ab)® = 2°4°, j = 2°3° = 1728.

(3.2) Search of E such that j(E) = 1728. To be more precise, let T be a
set of t = (a, b, ¢) € Z* such that ged(a, b, ¢) =1,a+ b= cmod2 and
ab@ # 0. Let E, be the elliptic curve (1.4) defined by ¢ Then, in view of
(1.7), finding ¢ such that j(E,) = 1728 amounts to solve the equation

(%) 4(P* —3Q)° — 27(ab@?*=0, t=(a,b,¢) €T.
Eliminating (ab)? from (%) and (1.3), we get, after a simple calculation,
(% %) 2P*=9Q ifP#0.

(Case P = 0 was taken care of in (3.1).) From (% *) and (1.3), we get
(% % %) P= =+ 3ab, Q= 2d4°b".

Hence E, is isomorphic over @ to the elliptic curve

() y'=2°— (ab)’r.

(3.3) Case c¢ is even. Let T be the same as in (3.2). Since we do not assume
the condition (2.2) (i.e., ¢ is odd) here, we can not use (2.3) to decide whether
rank E,(Q), t= (a, b, ¢) € T, is positive or not when ¢ is even. In this
case, however, one finds, using notation in (1.10), that P, = (x,, ¥,) € Zz,
and so one has again rank E,(Q) > 0 when

(# #) y, ¥ VD, D= (abQ">.

(Cf. the stronger form of the Nagell-Lutz theorem, [2] p. 56.)

By machine computation one obtains lots of curves with positive rank for ¢
even. It would be nice if one could get rid of the assumption (2.2) in (2.3), at
least in the case kK = @, except isosceles triangles (@ = b).
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