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1. Introduction. Theorems. For SchrOdinger operators H
V(x) and Ho: D-+- +D, D- i#/&c, the wave operators W+/-

Land Z+/- are defined by the limits in (R
itH -itHo$ itHoe-itH(1.1) W,u= lim e e Z+/-u= lim e P(H) u,

t--,+/-oo t--,+/-oo

where Pc(H) is the orthogonal projection onto the continuous spectral sub-
space L(H) for H. We assume that V(x) satisfies the following condition,

where m, (m 1) / (m 2), and is the Fourier

transform. We take and fix g > 2/m,, > max(m + 2, 3m/2 2) and
an integer l _> 0.

Assumption 1.1. V(x) is a real valued function on Rm, m _> 3, such that
((x> DV) Lm* for any a <- l and satisfies either (1) ((x> a,V)

=--C(V) is sufficiently small or (2) m- 2m’--1 is odd and D"V(x) <
C.(x) - for any[a] <_ max{l, m’ 4 + l).
Under the assumption, V is H0-bounded and is short-range in the sense of
Agrnon [1]. Hence H with domain D(H) D(Ho) W’ is selfadjoint and
both limits in (1.1) exist ([1], [8])" W+/- are partial isometrics from L onto

Lc(H) and Z+/- W*. Consequently, the continuous part He of H is unitarily

equivalent to H and, for any Borel function f, f(H)P(H) W+/-f(Ho) W*,
f(Ho) W*f(H) Pc(H)W+/-. The main result of this paper is the following

Theorem 1.1. Let V satisfy Assumption 1.1 and let 0 be neither eigenva-

lue nor resonance of H. Then, for any 1 <-- p <-- co and integral 0 <-- k <- l, W+/-
L k,P

and Z+/- originally defined on (q W can be extended to bounded operators in

Remark 1.1. We say 0 is resonance of H if Au(x) q- V(x)u(x) 0
has a solution u such that (x}-ru(x) L for any T > 1/2 but not for T- 0.
Under the assumption, 0 is not resonance if m >_ 5, and is neither eigenvalue

nor resonance if C(V) is small enough.
Remark 1.2. If 0 is resonance, Theorem 1.1 never holds. If 0 is eigen-

value of H, then it does not hold in general. This can be seen by comparing
the results of [3] or [9] with Theorem 1.3 below.

In the sequel, we always assume that the condition of Theorem 1.1 is

satisfied. For Banach spaces X and Y, B(X, Y)is the space of bounded
operators from X to Y, B(X) B(X, X). Theorem 1.1 yields the following

Theorem 1.2. Let 1 <-- p, q <-- co and let 0 <- k, k’ <- be integers. Then"
c-’ f(H0)
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where the constant C > 0 is independent of Borel functions f.
An immediate corollary of Theorem 1.2 is the Lp- Lq

estimate for time
dependent Schr6dinger, Klein-Gordon and wave equations. Under slightly
different conditions on V, such estimate has been proven recently for
Schr6dinger and wave equations ([5], [2]). See [4] for related results.

Theorem 1.3. Let O N k <_ be integral, 2 <_p <_ oo and 1/p
1. Then:

itHe- Pc(H)u I1,, -< C, It <’-, u I1,,, u e Z Wk’q

Theorem 1.4. Let 0 <-- k <- l be integral, 2 <-- p <-- 2(m + 1)/(m- 1)
and 1/p + 1/q 1. Then, there exists a constant Cp > 0 such that for any, LZc(H) f Wk’q

the solution u(t, x) of the Cauchy problem OZu / Otz
Au [2 u Vu, u(O, x) (x), ut(0, x) b(x) satisfies

u(t, ) I1., -< c, It l+m<’/o-1/q, <11 I1,., / ]H /
Moreover, if k <-- 1, ?H + pzqb Ilwk,, may be replaced by

Another consequence of Theorem 1.1 is on a multiplier theorem for the
generalized Fourier transforms. We assume (2) of Assumption 1.1. Then, for
any Rm\ {0}, there exists-a unique solution of (--A + V(x))+/-
(x, ) --I laCe(x, ) satisfying the radiation condition" +/-(x, ) eix’

+ e+/-ilxllllxl-(m-)/’Z(g(, ) -t- O(1 x I-)). Define

(27r)- ,,+/-(x, )u(x)dx.5+/-u()

o+/- are unitary from L( onto Le(Rm) W ; and diagonalize
g" Hcg()- eg(). Identity Pc( is equivalent to the

u(x) (2)-/generalized eigenfunction expansions"

u()d, u L(.
For a function f on Rm, M is the multiplication operator with f() and

f(n) *i.
Theorem 1.5. Let V satisfy Assumption 1.1, (2) and let 1

Then for any Borel function f we have
c- f(n)I.(,,.,,,., i1(,,.,,.) C f(n)

where the constant C is independent off
Combining Theorem 1.5 with known Fourier multiplier theorems, we

can give explicit conditions on f() forM to be bounded in W’.
2. Outline of the proof of Theorem 1.1. We prove the case 0 first.

We treat W+ only. R(z) (H-z)- and Ro(z) (Ho- z)- are the resolv-
ents. Assumption 1.1 implies V]](m,) CC(, > O. We decompose
V(x) A(x)B(x) with A, B Lm+* Lm-*. Then A and B are super-
smooth ([7]) and Kato’s theory of smooth operator ([6]) implies that W+f can
be written as W+f Zn0(- 1) n W f+ LNf for N 0,1 "’’. Here Wo is
the identity operator, W, n 1, which we estimate rather than Wn itself,
and LN are written as

(.) wf- ei o( + iO)(VRo(a iO))"faa
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n I itH itlH(--i) e We V’" We-’tnHfdt’’’ dt, t t + + t,

(2.2) Lgf 1 fo2zri (Ro( i0)V) R(2 i0) x

V{Ro(2 + i0) Ro(2- iO)}fd,.
Moreover, w.ll,,, <- (cc())" and IIL.II,,,.,-< (CC(V)) n+l for n= 0,1,.
and, when C(V)is small, W+ .--0(--1)’Wn converges in the operator
norm in B(L2).

Suppose for the moment l C[. Set K.(k,... ,k.) i’(2r)-nm/2-"
n nII:l I)(k- k_l), where ko 0. Define for (tl,...,tn) R and (ool,...
", is the unit sphere of Rm:
R, (t,... ,t,, a,... ,w,)

iX’lttst/2 m-2

.oo),
e- (sl" s,) K(slool, ,s,oo,)dsl" dsn.

Lemma 2.1. For n 1,2,..., W*f(x) can be written in the form

(2.3) W*f(z) ( [,(t,...,in_l, ’,oo,...,o9n)
’[o,oo)n-XxlxX

f( + p) dt dt,_dzdoo "doon
where, x- 2(co" y)oon is the reflection of y along the (.on axis, p to
+ + tn_n_ voon, and where I (-- oo, 2oo,x- a), a 2w,(x +
too + + tn_OOn_), is the range of the integration by the variable v.
Note that p does not depend on x. Extending the range of integration by v to
the whole line after taking the absolute values of both sides of (2.3), we have

W,*f(x) < So R,(t,... t,_, z-,co,, w,) x
,00)n- R Xn

f(2 + p) dt" dt_dvdoo" dw.
Noting that x--- is an isometry, we obtain by applying Minkowski’s ine-
quality:

Lemma 2.2. We have Wn*f II- -< 2 II/?, II,.,<o,,.,.., filL,, 1 <_ p
forn 1,2,"’.
Let X Lm-([0, )n, L(")). We have IIx cn K ItL,<, Cn

n nIIll, by HOlder and Hausdorff-Young inequalities and likewise II<=
<t> IIx cn <<> II,. Hence, by the multilinear interpolation in-

equality and the assumption > 2/m,, we obtain

j=l

Combining this with Lemma 2.2, we thus have
Lemma 2.3. We have wf I1. c(cc )" Z I1,, 1 g p

It is easy to see by the density argument that Lemma 2.3 extends to any V
with ((x) L* and, if C( is small, the series W+ :=o(-
1)"W. converges in the operator norm in B(L). This proves Theorem 1.1 in
the case C( is small.

Suppose Assumption 1.1, (2) now. m 2m’-- 1. Since W, j 1,...,m,
are bounded in L as shown above, we have only to show that L is also
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bounded in Lp. We estimate its integral kernel L(x, y). Setting N(k)-
{R0(k iO) v}m’-lR(k iO) {YRo(k i0)} m’-I we rewrite"

lfo(2.4) Lm rci Ro(k- iO) VN(k) V{Ro(k + iO) Ro(k- iO))kdk.

Let G+/-(x, k) __+ (i/4(27r)) ]x]-m(k]x ])/-/__(J)(k]x]) be the outgoing

(incoming) fundamental solutions of A k2, where H(j) (r), p (m 2) /

2, is the Hankel function of j-th kind and j 1 for
The integral kernel of Ro(k +- iO) is given by G+/-,z,k(Y) G+/-(x-- y, k),
and, consequently, that of the integrand of (2.4) is given by (N(k)V(G+,u,
G_,u,), VG+,z,). Set G+/-,x,(y) e+/-ilzl +/-,z,k(Y) and define T+/-(x, y, k)
(N(k) V+/-,,, V+,x,) and

1 foo(2.5) L: (x, y) T e T+/- (x, y, k) kdk,

so that L(x, y) L+(x, y) L_(x, y). The mapping properties of
R( :[: i0) and Ro(, +/- i0) given in [9] and [3] imply

Lemma 2.4. Let j O, m’
_< m" 2. Then (x-rN(k)(x-r" is a B(W-s’’, wS’) valued C-function
of k and
(2.6) (d/dk)(x)-rN(k)(x) -r" ][(w-’,-,w,-) -< C(k) -(m-s-’).
We estimates L+/-(x, y) by performing integration by parts in (2.5), using

Lemma 2.4, the decay property as x ---* co of [](y)-r(d/dx)+,x, ]]L’(Rm) for
suitable T J and q and the fact that e r n (r) are polynomials of degree
m’ 1 for odd m 2rn’ 1. Cancellations of the boundary terms of the in-

tegral (2.5) for L+(x, y) and L_(x, y) occur and we obtain

Lemma 2.5. We have supueRm _f_. L(x, y) dx < oo and SUPxeRm

f IL(x, )l <dy

This is a well known criterion for Lm to be bounded in Lp
and concludes the

proof of Theorem 1.1 for the case 1 0.
When l- 1, we compute DjWnf and DLmf, j- 1,...,n. For example,

using the first equation of (2.1), DW,f-- WDf can be computed as

=o
(Ro(2 i0) V)’Ro(2 i0) (DV) (Ro(2 i0) V)"--

Ro(2 + iO) fd2.
This is a sum of terms which have exactly the same form as the adjoint of
the second of (2.1) except that one of V is replaced by DV. Thus, the argu-

ment which leads to Lemma 2.3 above implies

D WJII. <- (n + 1)(CC(V))’-(C(V) + C(DjV)) Ilfll,,,,, 1 < p <
This shows that the series = W converges in the operator norm in
B(W’) for the same value of C(V) for which it converges in B(L). Thus

W+ is bounded in W’. The argument for DLmf is similar and Theorem 1.1
holds for 1 1. For general _> 2, we repeat this argument. The detail will

appear elsewhere.
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