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22. A Note on Jacobi Sums. II

By Akihiko GYOJA *) and Takashi ONO* *)

(Communicated by Shokichi IYANAGA, M.J.A., April 12, 1993)

This is a continuation of [1] which will be referred to as I ). In this
paper, we follow notation and conventions of (I) with one exception" our
definition of the Jacobi sum (1,1) is that of Weil [2] which differs from that
in (I) only by a factor 1.

1. Statement of results. For a prime l=/= 2, let k-- kt-- Q(),
27ci/1

e the th cyclotomic field. For a prime ideal p of k with p A" 1, let

X(X) (x/p), the 1 th power residue symbol in k. Following [2], we put
(1.1) Y(p) J,+x(p) Z x,(x) X,(X,+x),
where xx + + x+ 1 and x Z[(]/p. Note that
(1.2) J() g()’,
where g(p) is the Gauss sum. As usual, we denote by p,q,f,g the integers
such thatNp-- q--p, l-- 1 --fg.

Consider three subgroups of the Galois group G(k/)"
(1.3) G(](O)) (a G(k/Q) J(p) J(p)),
(1.4) G*(](O)) {a 6(k/Q); (](p))- (](p))},
(1.5) Z(O) {a G(k/Q) p p},
where (1.5) is the decomposition group of p whose order is f One sees easily
that
(1.6) Z(p) c G(](O)) c G*(](p)).

As in (I) we are interested in the subfield Q0r(p)) of k, i.e., the fixed
field of the group G(](p)). We prove the following

Theorem 1. If f is even, then G(](O))- G(k/Q). In other words,

J(p) Q.
Theorem 2. If f is odd, then G*(](p))- G0r(p))- Z(p). Especially,

Q(](O)) is the decomposition field of p.
Remark. In case f-- 1, we proved a general result without appealing

to Stickelberger’s theorem (see (I)). This paper is logically independent of (I).
2. Proof of Theorem 1. Denote by k+ the maximal real subfield of

k- k. Call at, 1Y t, the element of G (k / Q) defined by a’--t. Hence
a_l is the generator of G(k/k+), i.e., the restriction of the complex conjuga-
tion. If f is even, then a_ Z(O), for G(k/Q)is cyclic. Hence a_l

G(](O)) by (1.6)" soJ(p) k+ and, by (1 2),J(p)- IJ(p)I- t-P/q or
j(p) _+_pl/2i Q. Q.E.D.

Remark. Actually we have
(2.1) J(p) k+ <:> f is even <=> J(p) Q.

*) Department of Fundamental Sciences, Faculty of Integrated Human Studies,
Kyoto University.

**) Department of Mathematics, The Johns Hopkins University.



92 A. GYOJA and T. ONO [Vol. 69(A),

For (2.1), we have only to verify "J(p) k+=:>f" even." So suppose f is
odd. If J(p) were real, then j(p)2= [j(p)[2= p= pX+2h., so J(p) -+-
Hence Q(J(p))= Q(/). Since only quadratic field in k is Q(v/l*), /*=
(- 1)1/(-1)1, we must have Q(/) Q(l*) which contradicts :/: p.

3. Proof of Theorem 2. For an integer m_ 1 and x Z/mZ, we
shall denote by resm(X) the remainder of the division of x by m. Applying
he prime decomposition of J(p) due to Stickelberger (see [2] formula (5), (8),
pp. 489-490), we obtain
(3.1) ()) , oJ Z[O(k / Q) ], where
(3.2) w- rest(t) at., t*= t -.
For s F we have

(3.3) as w res (t) ast. 2 rest(st)at..

Hence, we have
(3.4) as G* 0r(p)) <==> p p.
Since (F)g---Z(p) by the map t at, it follows from
3.2) that
(3.5) II (I’*) with

R(t) Z res(tu).
u(F)

We see from (3.3)-(3.5) that

(3.6) as G*(J(p)) <=> ] res(stu) res,(tu), t F
Note that, in (3.6), we may consider s, t as elements of Ft /(Ft) e and as as
an element of G*(J(p))/Z(p), for J(p) --J(p) for all a G(k/Q). Now,
let w be a generator of the cyclic group Ft. Passing to the additive group
F Z/gZ by the correspondence t w s w, x, F, we can write
the equality in (3.6) as

(3.7) S(x4- ) S(x) for allx F,
with

f--1
(3.8) S(x) res (w+).

i=O

We denote by P the subgroup of F defined by
(3.9) P= { F; S(x+ ) S(x) for allx F}.
In view of (3.6), we have an isomorphism"
(3.10) P G*0r(p))/Z(p).
By (1.6) and Theorem 1, we have P’ G(k/Q)/Z(p) if f is even" hence
P- F, in this case.

We are now ready to prove Theorem 2. Let X be the totality of 2:
Hom(F, C) such that Z

g- 1. We shall naturally identify X with

Hom(F/(F)g, C). Note that the matrix (S(x- Y))x,ur is diagonalized

by (e2zci(xy)/g),
"x,v and the set of its eigenvalues is

E- { E S(x)ex/g; F} { E res,(x)z(x) ;2: X}.
xF xF’
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The members of E are x--1Z(x)x, which are the values L(1, 2)of the
Dirichlet L-functions up to some non-zero constants if 2: (-- 1) 1, and
so non-zero in these cases. Here 2 denotes the complex conjugate. (See [3]
for properties of Dirichlet L-functions used here.) Since the order f of (F) g

is odd by the assumption, 1 does not belong to (FI) g
and defines an ele-

ment of F/(Ft) of order 2. Hence there ar’e exactly g/2 elements 2: X
such that 2:(-- 1) 1, and so the corresponding g/2 elements of E are
non-zero. Moreover, the element of E corresponding to 2: 1 is positive;
hence E has at least (g/2) -t- 1 non-zero elements. In other words, we have
rank (S(x-t- ))x,r -> (g/2) -+- 1. If P {0}, then this rank is at most
g/2. Hence P {0}, and the assertion of the theorem follows from (1.6) and
(3.10).
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