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1. Introduction. We consider the heat convection equation in a
time-dependent domain 12(t) c R2. We assume that the domain .Q(t) varies
periodically in t with period T. In the 3-dimensional case, we proved the
existence and uniqueness of the periodic strong solution in [7] and showed
the stability of it in [8] when the data were small in a suitable sense. In this
paper, under somewhat released conditions than 3-dimensional case, we have
studied the existence, uniqueness and the stability of the periodic strong
solution. Recently, Morimoto [5] has got the periodic weak solution and
Inoue-tani [3] obtained the periodic strong one under their various situa-
tions.

2. Assumptions and formulation. Let Y2(t) be a time-dependent
bounded space domain in R2

with the boundary 812(t) =/o U F(t), where
/0 is the inner boundary and F(t) is the outer one. We denote by K the
compact set which is bounded by F0. We suppose that 12(t) is included in a
fixed open ball B1 with radius d such that .Q(t) c B1. We make the follow-
ing assumptions"

(A0)/’0 and/(t) do not intersect each other.
(A1) For each fixed t > 0, /’(t) and /’0 are both simple closed curves

and they are of class C3.
(A2) F(t) {t}(0 < t < T)changes smoothly (say, of class C4) with

respect to t.
(A3) g(x) is a bounded and continuous vector function in R\ int K.
(A4) (x, t)is defined on 12(t)and it can be extended to a vector

function b b(x, t) of the form b rot c, where c(x, t) is defined in B
[0, oo), of class C and periodic in t with period T. Moreover, it satisfies
the following condition

fr’n 0, =0, 1,ds i

where/1 means F(t) and n is the outer normal vector to 8Y2(t).
(A5) The domain 12(t), the boundary /’(t) and the function (x, t) vary

periodically in t with period T> 0. i.e., 12(t + T)= Y2(t),/’(t + T)=
F(t) and (’, t + T) (’, t) for each t > 0.

Now, let u-- u(x, t), 0= O(x, t) and p=p(x, t) be the velocity of
the viscous fluid, the temperature and pressure, respectively. Furthermore,
let p, x, or, p be physical constants and g g(x) be the gravitational vec-
tor. Then we consider the heat convection equation (HC)of Boussinesq
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approximation
u, + (u" V)u Vplp + {1 a(O- To))g + vAu,

(HC) div u o,
0 + (u" V)O AO,

in f2 U Q(t) {t} with the boundary condition
o<t<T

(1) u [oo(t) fl(x, t), 0 ]to To > O, 0 [r(t) 0 for any t > 0,
and with the periodicity condition
(2) u(’, t + T) u(’, t), 0(’, t + T) 0(’, t), in/2(t + T) -/2(t).

On the function fl, the next result holds (Lemma 2.7 in [4]).
Lemma 1. For any 7 > O, we can reconstruct a periodic (with period T)

function b W (B) satisfying b on OQ(t) div b=0 and (u V ) b
u) - r] Vu for any u HJ (Q(t)).

We choose a smooth periodic (with period T) function 0 on Q(t) with
the same boundary values on 8Q(t) as 0. Then, making a suitable change of
variables (see, (3.7), (3.8) in [7]) and using the same letters after changing of
variables, we get the heat convection equation of the following type"

u + (u’17)u --17p RO + Au [7 b (b "17 ) u
-b (b" V )b + Ab(U+ dag/va- R(3- x/v)

(3)
div u o,

O, + (u. I7)0 (clv)AO- (u" I7)0- (b. I7)0-- (b. I7)0,
where R ogTod/xv.
The boundary condition (1) is replaced by the following"
(4) u Ioa(t) 0, 0 ]oa(t)= 0 for any t > 0.
On the other hand, the periodicity condition is still the same one as (2).

We prepare some convex functions to define the strong solution of
(HC). (We use symbols W(.Q), I(.O), H(Q) and H2(Q), as usual.) Put
U t(u, 0) and notice Ho(B) L2(B) (H(B) O) + (O L(B))
(direct sum) where B B\K. Then, we introduce a proper lower semicon-
tinuous convex (p. 1. s. c.) function as follows"

(I V u + - V O l) dx if U H(B) x V2(B),
(5) q)B (U)

4- co if U (No(B) L (B)) \(H (B) I(B)).
Moreover, we consider a closed convex set K(t) in H(B) L2(B)"
(6) K(t) {U H(B) L(B) U 0 a.e. in B\,Q(t))
for any t >- 0 and define its indicator function
K(t) and IK(t)= + oo if U (H(B) if(B))\ K(t). Then we define a
p.l.s.c, function p by
(7) pt (U) p(U) + I1c(t) (U) for any t _> 0.
Let 8pt be the subdifferential operator of pt, then it holds that

(i) O(Oqt) {U

H2(t2(t))) x (W(D(t)) I(O(t))), Ul\,,, 0),
(ii) Oqt (U) {f Ho(B) L (B)

P(D(t))fla(t) A(D(t)) Ula(t) }
where A(Y2(t)) t(_ Po(9(t))A, -(tc/v)A), P(9(t)) (Po(9(t)),
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Land Po(D(t)) stands for the orthogonal projection from (g2(t)) to
Ha(Q(t)). Then, the equations (3) and (4) can be reduced to the following ab-
stract heat convection equation (AHC) in Ha(B) x L2(B).

dU
(AHC) - + 00 (U(t)) + F(t) U(t) + M(t) U(t) P(B) f(t), t >- 0

where U= t(u, 0), F(t) U(t) t(Pa(B)(u" V)u, (u" V)O), M(t) U(t)

t(p(B)((u" V)b+ (b" V)u+RO), (u" V)O + (b" V)O),f-t(fl,
f2) -(-bt-(b" V)b+Ab+ dag/v- R(O to (b" V)O) ;land
0 denote extensions of f and 0 to B with zero outside g2(t), respectively.

Under these preparations, we define the strong solution of (AHC) as fol-
lows.

Definition 1. Let U" [0, S]---* Ha(B) x L(B), S (0, oo). Then U
is called a strong solution of (AHC) on [0, S] if it satisfies the following

properties (i) and (ii).
(i) U C([0, S] ;H(B) x L(B)) and dU/dt exists for a.e. t (0, S].

(ii) U(t) D(O0t).for a.e. t [0, S] and there exists a function G:
[0, S] Ha(B) x L(B) satisfying G(t) Oot(U(t)) and (dU/dt) + G(t)
+ F(t)U(t) q- M(t)U(t) P(B)f(t) for a.e. t [0, S].

Definition 2. A strong solution of (AHC) is called a periodic strong
solution (resp. a strong solution of the initial value problem) if it satisfies the
condition (8)(resp. (9)) stated below:
(8) U(t + T) U(t) for t [0, oo) in Ha(B) x L(B),
(9) U(0) t(d, /i) in H.(B) x L(B),
where a and h are prescribed initial data in Ha(.Q(0)) L(.Q(0)).

3. Results. First, we notice the Poincar6 inequality.
Lemma 2. There exists a positive constant c such that

2(10) (0 (U) cI[I U ]IL.(B,
holds for every t [0, T] and U H(B) (B).

Now we make the following assumption on b.
(A6) b L(O, T; W(B)) and bt L(O, T" L"(B)).
Then, our results can be stated as follows.
Theorem 1. (i) There exists a positive number TO such that if T

_
To and

if (AO)’--(A6) are satisfied, then (AHC) has a periodic strong solution Uri with
period T.
(ii) Moreover, if b Ilz’,o,r;wg,B,,, bt ,d IIv 0 are suffi-
ciently small and u is large enough, then the periodic strong solution is unique.

Remark 1. To does not depend on the magnitude of the function b.
Theorem 2. (i) Let Un be any periodic strong solution in (i) of Theorem 1.

Then for any Uo Ha((0)) Le((O)), there exists a unique strong solution
U on [0, c) with U(O) UH(O) + Uo.
(ii) Moreover, if b and 0 are small in the same sense as in (ii) of Theorem 1 and, is large enough, then U(t) Un(t)[Iz’-(a,t,,z’-o(t,,--+ 0 as t---* co.

{}4. Proof of the theorems. We prepare some lemmas to prove the
theorems.



74 K. EDA [Vo1. 69(A),

Lemma 3. Let U t(u, ) be a strong solution of (AHC). Then we have
the following estimate on .
(11) o(t) I1,() < I/911=/, + o(o) Ilexp (- 2t/ v),
ohr B th ,,oZ,,m of th do, B.

The above lemma is a version of Lemma 2.1 of [1]. (See also [9].)
Lemma 4. (i) Let U--t(u, ) be a strong solution of (AHC). Then, for

any (0, S), there are positive constants a() (i 1,2,3), independent of S,
depending on b and , such that
(12) q(U(t)) K (a.(6)6-1 + a(6))exp(al(6))
holds for every t [6, S].
(ii) Furthermore, if U is a periodic strong solution with period T, then the esti-

mate (12) is valid for all t [0, T].
Proof of Lemma 4. The claim (i) can be proved by applying Lemma 9 of

[9] essentially. We will show (ii). We notice that if U is periodic, then
q+r (U(t + T)) p(U(t)) for any t [0, oo). On the other hand, since b
and are periodic we find from (A6) that b L(0, oo; W(B)), b,
L(0, c ;L2(B)) and L(0, oo ;C(B)), hence (12) holds for t
[6, c). Therefore, (12) is affirmative for all t [0, 7].

Remark 2. tn Lemma 4, we can show that a() are uniformly bounded
in any small positive and that a()(i 1,2,3) are small if

btIIL’(O,T;L*<B))and IlV I[L’<O,T;L’<B))are sufficiently small and p is large
enough. We omit verification. (See [1].)

Proposition 1. Let Uo (a, h) H --- Ha(Q(0) L (.Q(0)). Then,
(AHC) has a unique strong solution U t(u, 0) on [0, S] satisfying U(0)
Uo, where S > O.

Outline of the proof of Proposition 1. For a given Uo H, there exists a

sequence { U0,n} c H(,Q(0)) I/iz (2(0)) such that Uo,n Uo IIH --- 0 as n
--. o. Then, we have strong solutions Un of (AHC) with U(0) Uo, (see
[8]). On the other hand, by Gronwall’s inequality, we obtain

u.(t) u (t)II. -< c Uo.. Uo. I1 for any t [0, S],
where C > 0 is a constant independent of n, m, t, which implies that there
exists U C ([0, S] ;H) satisfying U,(t) U(t)IIH--* 0 as n--* oo uni-
formly on [0, S]. We will show U is a solution of (AHC). Indeed, if we take
an arbitrary 8 (0, S), then, using Lemma 4 together with the boundedness
of { Uo,n} and the lower semicontinuity of o, we get
(13) o’(U(t)) <_ liminf o’(U(t)) -< (a.(8)/8 + a(8))e()

for all n and t [c, S]. Recall Remark 2, then a(6) are uniformly bounded
in 8 (0, S) and this implies that U(t) D(o) for t (0, S]. The re-
maining part of the proof is easy, so we omit it.

Proof of Theorem 1. First we prove (i). Let s be an appropriate positive
number such that s < min (4x/qv, 4). We put
(14) A 4((4 s)sc)- {11 ]ll-,0,,:,,,,,,.,,,, + 2(I R

+ v I1-,,) B I /

(15) A2 8((4 )c,)-(I R + I1 IE-,,) (4/,- cl)
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where/- B x [0, T].
Multiplying the both sides of (AHC) by U(T) and integrating on B, then we
get

1 d
2 dt]l U(t)]]’+2 (U(t))

K ]((u" V )b, u) + RI’I (0, u) / I((u. ) 0, 0) / (L U)I.
We notice for some c; > 0, c; V u(t)[I

_
q)t(U(t)) holds. We use Lemma 1

with r/ (4 e)c/8, then we have
1 d qot 4--e
2 dt U(t) [l" + 2 (U(t)) K

8 (cl [IV u(t)II + 3c11 u(t)

+ (4 e) c
from which we get

d 4 {(I R + v Ill-<a,)II O(t)I[dt s(0 + sc s(0 (4

Hence, using the elemen.tary calculation, we have
(1) s(t) e s<o)

-atF e,s 4+ e {<l R + II-<>)II O<s)il + <s)II}ds
-o (4 s) c

Employing Lemma 3, we obtain
4

f I[L-(0,;L’(B,<7> <0 < e- <o> + <
-)

1 o(o)II8 (I + I1-,,) / c+ (4 s) c
x (1 e(q-/)) e-q.

Recalling s min(4/Q, 4) and especially sc- 4/ 0, then we get
from (17)

-sc1 -sc1)(8) u(o < e u(o)II + &(1 + & o(o)IIe
Now, we define a mapping as follows"

(9) f r H(n(o)) x L(n(0)) ,
rU(0) U(T) in H,

where we use the assumption (0) (T). By Proposition i we can take
initial data Uo in H H(D(0)) x L(D(0)). So, can be defined on H. We
also see r is continuous in H. Moreover, by Lemma 4, we infer that
rU(O) U(T) is included in a bounded set of H(D(0)) x (D(0)), from
this fact, it follows that is a compact mapping . Thus, we can apply
Schauder’s fixed point theorem to . Indeed, if we choose a constant
f > 0 such that 2At N f holds, then for any initial value U(0) satisfying
u(o)II we get from (18)

(o) u( W + W (1 + 2A) e

Here we put To (sQ)-log(1 + 2A)and assume To N T, then u(0



76 K. (EDA [Vol. 69(A),_
r2

holds and v maps the closed ball Br= { H= Ho(D(0)) x
L(12(0)) [IH r} into itself. Consequently, by Schauder’s fixed point
theorem, there exists V0 Ha(9(0)) x Le(D(0)) such that vVo Vo. Hence
we have shown (i).

Next we prove (ii). Let Un be the periodic strong solution obtained in (i)
and U be any periodic strong solution of (AHC). Put W= Un U, then
we have

(21) W(t) + 2t(w(t))
ct(W(t))’t(Un(t))/ + c6N(t)t(W(t)) for a.e. t [0, ,

whee c and c6 are positive constants independent of t;N(t) V b(t)] +
<t)II + [R I, Recall Remark 2 and the assumptions on b and , then, by

virtue of (i) and (ii) of Lemma 4, t(un(t))is so small that for any t
1/2[0, T], 2 csp (Un(0) QN(O > 0 holds.

Hence, by using an elementary argument, we proved the uniqueness of the
periodic strong solution.

Proof of Theorem 2. The claim (i) is an immediate consequence of Prop-
osition 1. We can prove (ii) in the same way as in the proof of (ii) of
Theorem 1. So, we omit the details.
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