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Abstract: Let M, , (@ @EN=1{,2,...},n>—p. 0= a<p)
deonte the class of functions of the form

=1 . a . a .
f(Z)—z,,"' 1 T o2 T

which are regular and p-valent in the punctured disc U*={z:0<
| z| < 1} and satisfy the condition
n+p i _
€ {Dlr?ﬂ—lf(i)) - (P + 1)} < - p(n +5+;) ta
z
0 < a < p, where
Dn+ﬂ—1f(z) —
2@ — 2"
It is proved that M, (@ <M, , () O<a<p,n>—p). Since
M, () is the class of p-valent meromorphically starlike functions of order
a(0 < a <p), all functions in M,,,_,(a) are p-valent meromorphically

starlike functions of order a. Further we consider the integrals of functions
in M,,,_,(a).

2| <1,

* f(z) (> —p).

1. Introduction. Let 25, denote the class of functions of the form

(1.1) fO=L+ %y by peN={2..D
z 2 2
which are regular and p-valent in the punctured disc U*=1{z:0<

| z] < 1} and let # be any integer greater than — p. A function f(2) in 20, is
said to be p-valent meromorphically starlike of order a(0 < a < p) if and
only if

(1.2) Re{—z%]<-—a for | z] < 1.

The Hadamard product or convolution of two functions f, g in Z, will be
denoted by fxk g. Let

(1.3) D""7'f(2) = 1

zﬂ(l _ z)n+P

*f(z2) (m>—p)

_ l z”+217—1 E(Z) (n+p—-1)
(14 o (n+p—1)!]

AMS (1980) Subject Classification. 30C45-30C50.



No. 3] Multivalent Meromorphic Starlike Functions 67

In this paper along with other things we shall show that a function

f(2) € 2, which satisfies one of the conditions
D"f(z) ] _pmt+p—1D +a

(1.6) Re {D””“f(z) p+1);< P , lzl <1,
for some a0 < a<p)and € N,=NU {0}, is meromorphically
p-valent starlike in U*. More precisely, it is proved that, for the classes
M,,,_ (@) of functions in 22, satisfying (1.6).
(1.7) M, ,(@c M, (& O<a<p,n>—p

holds. Since M,(a) equals Z:‘(oz) (the class of meromorphically p-valent
starlike functions of order a [5]), it follows from (1.7) that all functions in
M,., (@) are p-valent meromorphically starlike of order a. Further for ¢
>p—1,let

(1.8) F(p=t—b+1 oztcf(t) dt,

c+1
V4

it is shown that F(2) € M,,,,_,(a) whenever f(2) € M,,,_,(a). Also it is
shown that if f(2) € M,,,_,(a) then

(1.9) F(z) =2+2 L Wt f(@) dt

n+2p

belongs to M,,,(a). Some known results of Bajpai [1], Goel and Sohi [3],
Ganigi and Uralegaddi [2] and Uralegaddi and Ganigi [7] are extended. In [6]
Ruscheweyh obtained the new criteria for univalent functions.

2. The classes M, , (o). In proving our main results (Theorems 1
and 2 below). We shall need the following lemma due to I. S. Jack [4].

Lemma. Let w(2) be non-constant and regular in U= {z:]2z| <1},
w(0) = 0. If| w(2) | attains its maximum value on the circle | z| = » < 1 at 2,
we have zgw’(2,) = k w(z,), where k Is a real number and k = 1.

Theorem 1. M, (@) € M,,, ,(@),0 < a<p and n is any integer
greater than — p.

Proof. Let f(z2) € M,,,(@). Then

n+p+1
(2.1) Re{DD—Mg%‘?—@+1)]<—M:£—)1;‘_—a.

We have to show that (2.1) implies the inequality

n+p _
(2.2) Re{—l—)13+—p_{;—il—)—(p+1)]<_ﬂ(n+£+pl)+a'

Define w(z) in U by

D""’f(z) _ _[pa+p—D4+a p—al—wk
(2.3) D™ (2) P+D= [ n+p T +p1+ w(z)}’

Clearly w(2) is regular and w(0) = 0. Equation (2.3) may be written as

D"™f(2) _(n+p)+ (n+3p—200w()
D™ () n+pA+ wi)) '

Differentiating (2.4) logarithmically and using the identity
2.5  zD"7f@) = 4+ PD"f () — (n + 2p) D" Tf (D),

(2.4)
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we obtain

D™ () _ pntp ta
(2.6) D" (2) G+D+5 5T

__ b~ a { I—W(z)+ 2zw’ (2) }
T nt+p+1 14+ w(2) A+w@)n+p+ n+3p—200w(2])"

We claim that | w(2) | < 1 in U. For otherwise (by Jack’s lemma) there
exists 2, in U such that
(2.7) zow’ (29) = k w(zy),
where | w(z,) | = 1 and k = 1. From (2.6) and (2.7) we obtain

(2.8) D™ Gy ¢p+1) +2ntpt+a

Dnﬂf( 0) n+p+1
_ P a { 1— w(zo) 2k w(zy) }
T an+p+1 1 +w(z0) A+ we)n+p+ n+3p—200w(z)])"
Thus
Dﬂ+ﬂ+1f(z) (n + ) + a
(2.9) Re{W(—o‘;——(p+1)+2————L+p+l ]

—a
2(n+p+1)(n+2p—a)

which contradicts (2.1). Hence | w(2) | < 1 and from (2.3) it follows that
fl@) € Mn+p—1(a)-
Theorem 2. Let f(2) € Z, satisfy the condition
n+p
(2.10) Re {f—ﬂ,_l&)— — @+ 1)}
D f(zo)

(1)—a)—2(p(n+p—1)+a)(c+1—a)
2n+p)c+1—

for0<a<p,n>—p andc>p—1. Then
(2.11) Fip=¢—2+1 [ €AW dt

c+1
V4

belongs to M, ,_,(c).

Proof. From the definition of F(2), we have
(2.12) z(D""T'F@) = (c—p + DD () — (¢ + 1)D""'F(2).
Using (2.12) and the identity (2.5), the condition (2.10) may be written as

Dn+ﬁ+lF(z)

n+p+1 " —(+2p— 0
(2.13) Re (2) i @®+1
+—n+2p—c—1) T2
m+p) —m+2p—c—1) DFG)

(P“a)—Z(P(n+1>—1)+a)(c+1—a)
2+ pc+1—a

We have to prove that (2.13) implies the inequality

D""’f(2) _pntp—Dta
214) Re{-2 1@ _ (4
( ) € {D””'i"lf (2) (p D } n+p
Define w(2) in U by
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D"’F(2)

2.15
(2.19) D"""7'F (2)

—-—(p+1)
_ {p(n+p-—1)+a+p—a'1—w(z)]
n+p +p1—w
Clearly w(z2) is regular and w(0) = 0. The equation (2.15) may be written
as

(2.16)

D"'F() _ (n+p)+ n+3p— 20w(z)

D™ (2) n+p)A+ wz)
Differentiating (2.16) logarithmically and simplifying we obtain
(n + Dn+ﬁ+1F(z) _ _
p+1) T @ n+2p—20¢
(2.17 —@p+D
) N i R
D"’ F(2)
_ {p(n+p—1) ta ¢p—w l—w(z)}
n+p n+p 1+ w
20— a)zw' (2)

(n +pA+w@)c+1—p +@Pp—2a+c+ Dw@]"
The remaining part of the proof is similar to that of Theorem 1.
Putting p = ¢ =1 and # = o« = 0 in Theorem 2, we obtain the follow-
ing result obtained by Goel and Sohi [3] and Ganigi and Uralegaddi|2].

Corollary 1. Iff(2) = % + 35, a,2" and satisfies the condition

() <4
then

F@ =% 5 at

belongs to =* (the class of meromm'phwally starlike functions).
Remark 1. Corollary 1 extends a result of Bajpai [1].
Theorem 3. Iff(2) € M,,,_,(a), then

F(z =2%2 f £ £ () dt

n+2p
belongs to M, ,(a).
Proof. For

F) ==+ 1 ey ar,

c+1
z

we have
(c—p+ DD () = n+ p)D""’F() — n+ 2p — ¢ — 1)D"*7'F(2)
and
(c—p+1DD"™f2) = m+p+ 1)D"""'Fi2) — (n+ 2p — ¢)D"*’F(2).
Taking ¢ = n + 2p — 1 in the above relations we obtain

(m+p+ 1D 'F(z) — D"F(z) _ D"’f(2)

(n + p)D"F (2) DM

which reduces to
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n+p+DD""MF@ _ 1 _ D"f(»
(n + p)D"'F (2) ntP DY)’
Thus
n+p+DD"™'F@ _ 1
Re | (n+ p)D""'F (2) wrp 0t D)
- p, [P @ _pmtp—1D+a
_Re{Dn+p—1f(z) (p+1)}< n+p ’

from which it follows that

D™ F(@) P+ p) ta
{gxggy @+ )< - R

This completes the proof of Theorem 3.

Remark 2. Taking p = 1 and a = 0 in the above theorems, we get the
results obtained by Ganigi and Uralegaddi [2].
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