16. Some Generalizations of the Unicity Theorem of Nevanlinna

By Nobushige TODA
Department of Mathematics, Nagoya Institute of Technology
(Communicated by Kiyosi Itô, M. J. A. , March 12, 1993)

1. Introduction. Let $f(z)$ be a transcendental meromorphic function in $|z|<\infty$ and let $S(f)$ be the set of meromorphic functions $a(z)$ in $|z|<\infty$ which satisfy

$$
T(r, a)=o(T(r, f)) \quad(r \rightarrow \infty)
$$

We consider $\overline{\boldsymbol{C}}=\boldsymbol{C} \cup\{\infty\}$ to be a subset of $S(f)$. We put for $a \in S(f)$

$$
E(f=a)=\{z: f(z)-a(z)=0\}
$$

More than sixty years ago, R. Nevanlinna proved the following theorem, which is called the Unicity Theorem.

Theorem A. Let f_{1} and f_{2} be transcendental meromorphic functions in $|z|<\infty$. If for five distinct values a_{1}, \ldots, a_{5} of $\overline{\boldsymbol{C}}$

$$
E\left(f_{1}=a_{j}\right)=E\left\{f_{2}=a_{j}\right)(j=1, \ldots, 5)
$$

then $f_{1}=f_{2}([2]$, p. 109, see also [1], p. 48).
The following theorem was used to prove Theorem A in [2].
Theorem B. For any $q(\geq 3)$ distinct values a_{1}, \ldots, a_{q} of $\overline{\boldsymbol{C}}$,

$$
\begin{equation*}
(q-2) T(r, f)<\sum_{j=1}^{q} \bar{N}\left(r, a_{j}\right)+S(r, f) \tag{1}
\end{equation*}
$$

([2], p. 70).
The functions $f_{1}(z)=e^{z}, f_{2}(z)=e^{-z}$, with $a_{1}=0, a_{2}=1, a_{3}=-1$ and $a_{4}=\infty$ show that Theorem A is best ([2], p. 111).

It is an open problem to generalize Theorem A to the case when a_{1}, \ldots, a_{5} belong to $S(f)$ ([3]). This is neither trivial nor easy since we do not have an inequality corresponding to (1) for a_{1}, \ldots, a_{q} of $S(f)$ except when $q=3$. When $q=3$, we have the following theorem.

Theorem C. Suppose that a_{1}, a_{2} and a_{3} are distinct in $S(f)$. Then we have

$$
(1+o(1)) T(r, f)<\sum_{j=1}^{3} \bar{N}\left(r, 1 /\left(f-a_{j}\right)\right)+S(r, f)
$$

as $r \rightarrow \infty$ (see [1], p. 47).
It is a very interesting open problem whether (1) holds for distinct a_{1}, \ldots, a_{q} in $S(f)$ ([1], p. 47 ; cf. [4], Satz 1).

The purpose of this paper is to give some generalizations of Theorem A by making use of Theorem C. We use the standard notation of the Navanlinna theory of meromorphic functions ([1], [2]) and we use ${ }_{n} C_{k}=$ $n!/(n-k)!k!$ as the binomial coefficient.
2. Lemmas. We shall give some lemmas in this section. Let f be a transcendental meromorphic function in $|\boldsymbol{z}|<\infty$.

Lemma 1. If a_{1}, \ldots, a_{7} are distinct elements of $S(f)$, then

$$
\left(\frac{7}{3}+o(1)\right) T(r, f)<\sum_{j=1}^{7} \bar{N}\left(r, 1 /\left(f-a_{j}\right)\right)+S(r, f)
$$

as $r \rightarrow \infty$.
Proof. For any distinct integers s, t, u such that $1 \leq s, t, u \leq 7$, we have from Theorem C

$$
\begin{aligned}
& (1+o(1)) T(r, f)<\bar{N}\left(r, 1 /\left(f-a_{s}\right)\right)+\bar{N}\left(r, 1 /\left(f-a_{t}\right)\right) \\
& +\bar{N}\left(r, 1 /\left(f-a_{u}\right)\right)+S(r, f)
\end{aligned}
$$

as $r \rightarrow \infty$. Since there are ${ }_{7} C_{3}$ different combinations when we choose three elements from a_{1}, \ldots, a_{7}, we obtain

$$
{ }_{7} C_{3}(1+o(1)) T(r, f)<{ }_{6} C_{2} \sum_{j=1}^{7} \bar{N}\left(r, 1 /\left(f-a_{j}\right)\right)+S(r, f)
$$

as $r \rightarrow \infty$, which reduces to the inequality to be proved.
Lemma 2. If a_{1}, \ldots, a_{6} are distinct elements of $S(f)$, then $\left(\frac{5}{2}+o(1)\right) T(r, f)<\sum_{j=1}^{5} \bar{N}\left(r, 1 /\left(f-a_{j}\right)\right)+\frac{5}{2} \bar{N}\left(r, 1 /\left(f-a_{6}\right)\right)+S(r, f)$ as $r \rightarrow \infty$.

Proof. For any distinct integers p, q such that $1 \leq p, q \leq 5$, we have from Theorem C

$$
\begin{aligned}
(1+o(1)) T(r, f)<\bar{N}\left(r, 1 /\left(f-a_{p}\right)\right) & +\bar{N}\left(r, 1 /\left(f-a_{q}\right)\right) \\
& +\bar{N}\left(r, 1 /\left(f-a_{6}\right)\right)+S(r, f)
\end{aligned}
$$

as $r \rightarrow \infty$. Since there are ${ }_{5} C_{2}$ different combinations when we choose two elements from a_{1}, \ldots, a_{5}, we obtain

$$
\begin{aligned}
& { }_{5} C_{2}(1+o(1)) T(r, f)<{ }_{4} C_{1} \sum_{j=1}^{5} \bar{N}\left(r, 1 /\left(f-a_{j}\right)\right) \\
& \quad+{ }_{5} C_{2} \bar{N}\left(r, 1 /\left(f-a_{6}\right)\right)+S(r, f)
\end{aligned}
$$

as $r \rightarrow \infty$, which reduces to the inequality to be proved.
Lemma 3. If a_{1}, \ldots, a_{5} are distinct elements of $S(f)$, then

$$
\begin{gathered}
(3+o(1)) T(r, f)<\sum_{j=1}^{3} \bar{N}\left(r, 1 /\left(f-a_{j}\right)\right)+3\left\{\bar{N}\left(r, 1 /\left(f-a_{4}\right)\right)\right. \\
\left.+\bar{N}\left(r, 1 /\left(f-a_{5}\right)\right)\right\}+S(r, f)
\end{gathered}
$$

as $r \rightarrow \infty$.
Proof. By Theorem C, we have for $j=1,2,3$

$$
(1+o(1)) T(r, f)<\bar{N}\left(r, 1 /\left(f-a_{j}\right)\right)+\bar{N}\left(r, 1 /\left(f-a_{4}\right)\right)
$$

$$
+\bar{N}\left(r, 1 /\left(f-a_{5}\right)\right)+S(r, f)
$$

as $r \rightarrow \infty$. Adding these inequalities for $j=1,2$ and 3 , we easily obtain our lemma.
3. Theorems. Let f_{1} and f_{2} be transcendental meromorphic functions in $|z|<\infty$.

Theorem 1. If for seven distinct elements a_{1}, \ldots, a_{7} which belong to $S\left(f_{1}\right) \cap S\left(f_{2}\right)$

$$
E\left(f_{1}=a_{j}\right)=E\left(f_{2}=a_{j}\right) \quad(j=1, \ldots, 7)
$$

then $f_{1}=f_{2}$.
Proof. We suppose that f_{1} and f_{2} are not identical. We have
(2) $\left(\frac{7}{3}+o(1)\right) T\left(r, f_{k}\right)<\sum_{j=1}^{7} \bar{N}\left(r, 1 /\left(f_{k}-a_{j}\right)\right)+S\left(r, f_{k}\right) \quad(k=1,2)$
as $r \rightarrow \infty$ by Lemma 1 . We write

$$
N_{j}(r)=\bar{N}\left(r, 1 /\left(f_{1}-a_{j}\right)\right)=\bar{N}\left(r, 1 /\left(f_{2}-a_{j}\right)\right)(j=1, \ldots, 7)
$$

We then have from (2) as $r \rightarrow \infty$

$$
\begin{align*}
\left(\frac{7}{3}+o(1)\right)\left\{T\left(r, f_{1}\right)+T(r\right. & \left.\left., f_{2}\right)\right\}<2 \sum_{j=1}^{7} N_{j}(r)+S\left(r, f_{1}\right)+S\left(r, f_{2}\right) \tag{3}\\
& <2\left\{T\left(r, f_{1}\right)+T\left(r, f_{2}\right)\right\}+S\left(r, f_{1}\right)+S\left(r, f_{2}\right)
\end{align*}
$$

since

$$
\begin{aligned}
\sum_{j=1}^{7} N_{j}(r) \leq \bar{N}\left(r, 1 /\left(f_{1}-f_{2}\right)\right. & \leq T\left(r, f_{1}-f_{2}\right)+O(1) \\
& \leq T\left(r, f_{1}\right)+T\left(r, f_{2}\right)+O(1)
\end{aligned}
$$

Thus we have

$$
\left(\frac{1}{3}+o(1)\right)\left\{T\left(r, f_{1}\right)+T\left(r, f_{2}\right)\right\}=S\left(r, f_{1}\right)+S\left(r, f_{2}\right)
$$

as $r \rightarrow \infty$, which is impossible. f_{1} and f_{2} must be identical.
Theorem 2. If there are five distinct elements a_{1}, \ldots, a_{5} in $S\left(f_{1}\right) \cap S\left(f_{2}\right)$, b_{1} in $S\left(f_{1}\right)$ and b_{2} in $S\left(f_{2}\right)$ such that b_{1} and b_{2} are different from a_{1}, \ldots, a_{5} and such that
(i) $E\left(f_{1}=a_{j}\right)=E\left(f_{2}=a_{j}\right) \quad(j=1, \ldots, 5)$
(ii) $\limsup _{r \rightarrow \infty} \frac{\bar{N}\left(r, 1 /\left(f_{k}-b_{k}\right)\right)}{T\left(r, f_{k}\right)}=\delta_{k}<\frac{1}{5} \quad(k=1,2)$, then $f_{1}=f_{2}$.

Proof. Suppose that f_{1} and f_{2} are not identical. We have for $k=1,2$

$$
\begin{array}{r}
\left(\frac{5}{2}+o(1)\right) T\left(r, f_{k}\right)<\sum_{j=1}^{5} \bar{N}\left(r, 1 /\left(f_{k}-a_{j}\right)\right)+\frac{5}{2} \bar{N}\left(r, 1 /\left(f_{k}-b_{k}\right)\right) \tag{4}\\
+S\left(r, f_{k}\right)
\end{array}
$$

as $r \rightarrow \infty$ by Lemma 2. If we write

$$
N_{j}(r)=\bar{N}\left(r, 1 /\left(f_{1}-a_{j}\right)\right)=\bar{N}\left(r, 1 /\left(f_{2}-a_{j}\right)\right) \quad(j=1, \ldots, 5),
$$

we have from (4) as $r \rightarrow \infty$

$$
\begin{aligned}
\left(\frac{5}{2}+o(1)\right) & \left\{T\left(r, f_{1}\right)+T\left(\mathrm{r}, f_{2}\right)\right\} \\
< & 2 \sum_{j=1}^{5} N_{j}(r)+\frac{5}{2} \sum_{k=1}^{2} \bar{N}\left(r, 1 /\left(f_{k}-b_{k}\right)\right)+S\left(r, f_{1}\right)+S\left(r, f_{2}\right) \\
< & \left(2+\frac{5}{2} \delta\right)\left\{T\left(r, f_{1}\right)+T\left(r, f_{2}\right)\right\}+S\left(r, f_{1}\right)+S\left(r, f_{2}\right)
\end{aligned}
$$

by the hypothesis (ii), where δ is any number satisfying

$$
\max \left(\delta_{1}, \delta_{2}\right)<\delta<\frac{1}{5}
$$

We also used the inequality

$$
\begin{aligned}
\sum_{j=1}^{5} N_{j}(r) \leq \bar{N}\left(r, 1 /\left(f_{1}-f_{2}\right)\right) & \leq T\left(r, f_{1}-f_{2}\right)+O(1) \\
& \leq T\left(r, f_{1}\right)+T\left(r, f_{2}\right)+O(1)
\end{aligned}
$$

Thus we have

$$
(1-5 \delta+o(1))\left\{T\left(r, f_{1}\right)+T\left(r, f_{2}\right)\right\}=S\left(r, f_{1}\right)+S\left(r, f_{1}\right)
$$

as $r \rightarrow \infty$, which is impossible as $1-5 \delta>0$. f_{1} and f_{2} must be identical.
Corollary 1. If f_{1} and f_{2} are entire and if there are five distinct elements a_{1}, \ldots, a_{5} in $S\left(f_{1}\right) \cap S\left(f_{2}\right)-\{\infty\}$ such that

$$
E\left(f_{1}=a_{j}\right)=E\left(f_{2}=a_{j}\right) \quad(j=1, \ldots, 5)
$$

then $f_{1}=f_{2}$.
Theorem 3. If there are three distinct elements a_{1}, a_{2} and a_{3} in $S\left(f_{1}\right) \cap$ $S\left(f_{2}\right)$, two distinct elements b_{1} and c_{1} in $S\left(f_{1}\right)$, two distinct elements b_{2} and c_{2} in $S\left(f_{2}\right)$ such that b_{1}, c_{1}, b_{2} and c_{2} are different from a_{1}, a_{2} and a_{3} and such that (i) $E\left(f_{1}=a_{j}\right)=E\left(f_{2}=a_{j}\right) \quad(j=1,2,3)$
(ii) $\lim _{r \rightarrow \infty} \sup \frac{\bar{N}\left(r, 1 /\left(f_{k}-b_{k}\right)\right)+\bar{N}\left(r, 1 /\left(f_{k}-c_{k}\right)\right.}{T\left(r, f_{k}\right)}=\delta_{k}<\frac{1}{3} \quad(k=1,2)$, then $f_{1}=f_{2}$.

Proof. We suppose that f_{1} and f_{2} are not identical. We have for $k=1$, 2 as $r \rightarrow \infty$

$$
\begin{aligned}
(3+o(1)) T\left(r, f_{k}\right)<\sum_{j=1}^{3} \bar{N}\left(r, 1 /\left(f_{k}-a_{j}\right)\right) & +3 \bar{N}\left(r, 1 /\left(f_{k}-b_{k}\right)\right) \\
& +3 \bar{N}\left(r, 1 /\left(f_{k}-c_{k}\right)\right)+S\left(r, f_{k}\right)
\end{aligned}
$$

by Lemma 3. If we write

$$
N_{j}(r)=\bar{N}\left(r, 1 /\left(f_{1}-a_{j}\right)\right)=\bar{N}\left(r, 1 /\left(f_{2}-a_{j}\right)\right)(j=1,2,3),
$$

as in the proof of Theorem 2 we have as $r \rightarrow \infty$

$$
\begin{aligned}
& (3+o(1))\left\{T\left(r, f_{1}\right)+T\left(r, f_{2}\right)\right\} \\
& <2 \sum_{j=1}^{3} N_{j}(r)+3 \sum_{k=1}^{2}\left\{\bar{N}\left(r, 1 /\left(f_{k}-b_{k}\right)\right)+\bar{N}\left(r, 1 /\left(f_{k}-c_{k}\right)\right)\right\} \\
& \\
& \quad+S\left(r, f_{1}\right)+S\left(r, f_{2}\right) \\
& <(2+3 \delta)\left\{T\left(r, f_{1}\right)+T\left(r, f_{2}\right)\right\}+S\left(r, f_{1}\right)+S\left(r, f_{2}\right)
\end{aligned}
$$

by the hypothesis (ii), where δ is any number satisfying

$$
\max \left(\delta_{1}, \delta_{2}\right)<\delta<\frac{1}{3}
$$

Thus we have

$$
(1-3 \delta+o(1))\left\{T\left(r, f_{1}\right)+T\left(r, f_{2}\right)\right\}=S\left(r, f_{1}\right)+S\left(r, f_{2}\right)
$$

as $r \rightarrow \infty$, which is impossible since $1-3 \delta>0$. f_{1} and f_{2} must be identical.
Corollary 2. In Theorem 3, if b_{k} and c_{k} are Picard exceptional values for $f_{k}(k=1,2)$, we have $f_{1}=f_{2}$.

This is because the hypothesis (ii) is evidently satisfied in this case.
Remark. For meromorphic functions $f_{1}(z)$ and $f_{2}(z)$ in $|z|<1$ which satisfy

$$
\underset{r \rightarrow \infty}{\lim \sup } \frac{T\left(r, f_{k}\right)}{\log 1 /(1-r)}=\infty \quad(k=1,2),
$$

similar results to Theorems 1, 2 and 3 remain valid (cf. [1], p. 49).

References

[1] W. K. Hayman: Meromorphic Functions. Oxford at the Clarendon Press (1964).
[2] R. Nevanlinna: Le théorème de Picard-Borel et la théorie des fonctions méromor-
phes. Gauthier-Villars, Paris (1929).
[3] M. Shirosaki: An extension of unicity theorem for meromorphic functions (to appear in Tohoku Math. J.).
[4] N. Steinmetz: Eine Verallgemeinerung des zweiten Nevanlinnaschen Hauptsatzes. J. reine und angew. Math., 368, 134-141 (1986).

