12. Orders in Quadratic Fields. I

By R. A. MOLLIN

Mathematics Department, University of Calgary, Canada (Communicated by Shokichi IYANAGA, M. J. A., March 12, 1993)

Abstract: The primary purpose herein is to provide sufficient conditions for a quadratic order to have its class group generated by ambiguous ideals, and we conjecture that the conditions are in fact necessary. These conditions are given in terms of certain prime-producing quadratic polynomials.

Key words and phrases: Real quadratic order; class Group; quadratic polynomial.

§1. Notation and preliminaries. Let $[\alpha, \beta]$ denote the **Z**-module $\{\alpha x\}$ $+\beta y:x,y,\in Z$ and fix $D_0\in Z$ as a (positive or negative) square-free integer. Set $\sigma=2$ if $D_0\equiv 1\pmod 4$ and $\sigma=1$ otherwise. Define $\omega_0=(\sigma-1)$ $(1+\sqrt{D_0})/\sigma$, $\Delta_0=(\omega_0-\bar{\omega}_0)^2=4~D_0/\sigma^2$, where $\bar{\omega}_0$ is the algebraic conjugate of ω_0 , and let $\omega_{\Delta} = f\omega_0 + h$ where f, $h \subset \mathbb{Z}$. If we set $\mathcal{O}_{\Delta} = [1, f\omega_0] = [1, \omega_{\Delta}]$ and $\Delta = (\omega_{\Delta} - \bar{\omega}_{\Delta})^2 = f^2 \Delta_0$ then \mathcal{O}_{Δ} is an order in $Q(\sqrt{\Delta}) = f^2 \Delta_0$ $Q(\sqrt{D_0})$ having conductor f, and fundamental discriminant Δ_0 . Moreover D_0 is the radicand; i.e., the square-free kernel of the discriminant Δ . It is well-known (e.g. see [1]) that I is a non-zero ideal in \mathcal{O}_{Δ} if and only if $I = [a, b + c\omega_{\Delta}]$ where $a, b, c, \in \mathbb{Z}$ with $c \mid b, c \mid a$, and $ac \mid N(b + c\omega_{\Delta})$, where N is the norm from $Q(\sqrt{\Delta})$ to Q; i.e., $N(\alpha) = \alpha \bar{\alpha}$. I is called *primitive* if c = 1, and a > 0. In this case a is the smallest positive integer in I and $a = N(I) = (\mathcal{O}_{\Delta}: I)$. A primitive ideal I can be written as $I = [a, b + \omega_{\Delta}]$ with $0 \le b \le a$. An ideal I in \mathcal{O}_A is called regular if $\mathcal{O}_0 = \{\alpha \in Q(\sqrt{\Delta}) : \alpha I\}$ $\subseteq I$. All regular ideals are *invertible*. Note that an ideal I is invertible if there is an element $\gamma \in I$ such that $gcd(f, N(\gamma)) = 1$, (e.g. see [1, Theorem 7, p.122]). Thus if gcd(f, N(I)) = 1 then I is invertible. We denote equivalence of ideals by $I \sim J$ (by which we mean that there are non-zero elements α_1 and α_2 of \mathcal{O}_{Δ} with $\alpha_1 I = \alpha_2 J$), and we denote the group of equivalence classes by $C_{\!\scriptscriptstyle \Delta}$ (and note that $C_{\!\scriptscriptstyle \Delta} \cong {\rm Pic} \; \mathscr{O}_{\!\scriptscriptstyle \Delta}$). Let $h_{\!\scriptscriptstyle \Delta}$ be the order of $C_{\!\scriptscriptstyle \Delta}$; i.e., the class number of \mathcal{O}_{Δ} . We denote the exponent of C_{Δ} by e_{Δ} ; i.e., the smallest positive integer $e_{\!\scriptscriptstyle \Delta}$ such that $I^{e_{\!\scriptscriptstyle \Delta}} \sim 1$ for all I in $C_{\!\scriptscriptstyle \Delta}$. Also principal ideals generated by a single element α are denoted by (α) . We denote finally

$$M_{\Delta} = \begin{cases} \sqrt{-\Delta/3} & \text{if } \Delta < 0 \\ \sqrt{\Delta/5} & \text{if } \Delta > 0. \end{cases}$$

The following is well-known, (e.g. see [1, Theorem 11, p.141]).

Theorem 1.1. Every class in C_{Δ} contains a regular, primitive ideal I with $N(I) < M_{\Delta}$.

Based upon the above, the following improves upon Theorem 2.7 of [2].

Theorem 1.2. C_{Δ} is generated by the primitive regular prime ideals \mathcal{P} with $N(\mathcal{P}) < M_{\Delta}$.

Proof. By Theorem 1.1 there is an ideal I in each class of C_{Δ} with $N(I) < M_{\Delta}$. Each such ideal is divisible by a primitive, regular prime ideal \mathcal{P} , and $N(\mathcal{P}) \leq N(I) < M_{\Delta}$. The result now follows.

We recall finally that, an *Extended Richard-Degert type* radicand (or simply ERD-type) is one of the form $\ell^2 + r$ where $4\ell \equiv 0 \pmod{r}$.

§2. Ambiguous ideals and quadratic polynomials. All of the above notation is in force throughout. First we need the following.

Definition 2.1. Let q be a positive square-free divisor of Δ_0 with $\gcd(q,f)=1$, then $F_{\Delta,q}(x)=qx^2+(\alpha-1)qx+\frac{1}{4q}\left((\alpha-1)q^2-\Delta\right)$ where $\alpha=1$ if 4q divides Δ and $\alpha=2$ otherwise.

To obtain the main result we first need a technical result which generalizes [3, Lemma 3.1, p.830].

Lemma 2.1. Let $q \ge 1$ be a square-free divisor of Δ_0 with $\gcd(q, f) = 1$. If p is a prime then $F_{\Delta,q}(x) \equiv 0 \pmod{p}$ for some integer $x \ge 0$ if and only if $(\Delta/p) \ne -1$ and p does not divide q.

Proof. If $(\Delta/p) \neq -1$ and p is an odd prime then there exists an integer x such that $\Delta \equiv q^2(2x+\alpha-1)^2 \pmod{p}$; i.e., $F_{\Delta,q}(x)=qx^2+qx(\alpha-1)+\frac{1}{4q}\left((\alpha-1)q^2-\Delta\right)\equiv 0 \pmod{p}$. If p=3 then either x=0 or x=1 suffices.

Conversely, if $F_{\Delta,q}(x) \equiv 0 \pmod{p}$ then $\Delta \equiv [q(2x + \alpha - 1)]^2 \pmod{p}$; whence $(\Delta/p) \neq -1$. Also if p divides q then p = 2 is forced and it is easy to see that this leads to a contradiction.

Now we provide a proof of the main result.

- **Theorem 2.1.** Let $q_i \geq 1$ for $1 \leq i \leq n$ be pairwise relatively prime, square-free divisors of Δ_0 with $\gcd(f, q_i) = 1$ for all such i. For each prime $p \leq M_{\Delta}$ with $(\Delta/p) \neq -1$ and $p \neq q_i$ for any positive $i \leq n$, assume that the following both hold.
- (1) There is a $q = \prod_{i \in \mathcal{S}} q_i$ for some $\mathcal{S} \subseteq \{1, 2, \ldots, n\}$ such that $|F_{\Delta,q}(x)| = pr$ for some integer $x \geq 0$, and some $r \geq 1$, where r is not divisible by any unramified primes and,
- (2) If r > 1 then there exists a $t = \prod_{i \in \bar{\mathcal{J}}} q_i$ with $\bar{\mathcal{J}} \subseteq \{1, 2, \ldots, n\}$ such that $|F_{\Delta,t}(x)| = r$ for some integer $x \geq 0$. Then $C_{\Delta} = \{1, 2_1, \ldots, 2_n\}$, where 2_i is the unique \mathcal{O}_{Δ} -ideal over q_i .

Proof. By Theorem 1.2, C_{Δ} is generated by the primitive, regular prime ideals \mathcal{P} with $N(\mathcal{P}) = p < M_{\Delta}$ and $(\Delta/p) \neq -1$. If $p \neq q_i$ for any positive $i \leq n$ then, by hypothesis (1), there is a $q = \prod_{i \in \mathcal{S}} q_i$ for some $\mathcal{S} \subseteq \{1, 2, \ldots, n\}$ such that $|F_{\Delta,q}(x)| = pr$ for some integer x (with the observation that, by

Lemma 2.1, p does not divide q). Therefore $\frac{1}{4} (q(2x + \alpha - 1)^2 - \Delta/q) = pr$. Thus, $\frac{1}{4} [(q(2x + \alpha - 1))^2 - \Delta] = pqr$. Now, set $b = \begin{cases} qx \text{ if } \alpha = 1, \\ qx + (q-1)/2 \text{ if } \alpha = 2 \text{ and } q \text{ is odd,} \\ q(2x+1)/2 \text{ if } \alpha = 2 \text{ and } q \text{ is even.} \end{cases}$

Let \mathcal{Q} , \mathcal{R} and \mathcal{T} be \mathcal{O}_{Δ} -ideals over q, r and t respectively. Hence $\mathcal{P}\mathcal{Q}\mathcal{R} = [pq, b + \omega_{\Delta}]$ is a primitive, regular ideal with $N(b + \omega_{\Delta}) = pqr$; i. e., $\mathcal{P}\mathcal{Q}\mathcal{R} \sim 1$ since, in fact, $\mathcal{P}\mathcal{Q}\mathcal{R} = (b + \omega_{\Delta})$. Similarly, from hypothesis (2) we get that $\mathcal{T}\mathcal{R} \sim 1$. Thus, $\mathcal{P} \sim \mathcal{T}\mathcal{Q}$ and the result follows.

Now we illustrate the above with an example.

Example 2.1. Let $\Delta=4\cdot25935=4\cdot3\cdot5\cdot7\cdot13\cdot19$, then $\lfloor M_{\Delta}\rfloor=144$, $h_{\Delta}=16$ and $A_{\Delta}=\lfloor (M_{\Delta}-1)/2\rfloor=71$. Let $q_1=3$, $q_2=5$, $q_3=7$ and $q_4=13$. We may verify that other than these q_i 's the non-inert primes $p< M_{\Delta}$ are in the set $\mathcal{S}=\{2,19,29,31,41,43,67,71,79,89,97,101,103,107,109,139\}$. We verify this for example by looking at a print out of the divisors $p< M_{\Delta}$ of $F_{\Delta,1}(x)$ for $0\leq x\leq A_{\Delta}$ using Lemma 2.1. Moreover, from a listings of all $|F_{\Delta,q}(x)|$ for all divisors q of $3\cdot5\cdot7\cdot13$ and $0\leq x\leq A_{\Delta}$ we glean from Theorem 2.1 that

q	x	$F_{\Delta,q}(x)$	$p \in \mathcal{S}$
7	23	2	2
1365	0	19	19
114	1	29	29
266	0	31	31
39	4	41	41
30	5	43	43
5	32	67	67
210	0	71	71
91	2	79	79
190	0	89	89
182	0	97	97
26	6	101	101
3	54	103	103
95	190	107	107
21	8	109	109
65	2	139	139

Therefore,

$$C_{\Delta} = \{1, \mathcal{Q}_2, \mathcal{Q}_3, \mathcal{Q}_5, \mathcal{Q}_7, \mathcal{Q}_{13}\}, \text{ but } \mathcal{Q}_2 \sim \mathcal{Q}_7 \text{ so,}$$
 $C_{\Delta} = \langle \mathcal{Q}_3 \rangle \times \langle \mathcal{Q}_5 \rangle \times \langle \mathcal{Q}_7 \rangle \times \langle \mathcal{Q}_{13} \rangle, \text{ since } h_{\Delta} = 16.$

Remark 2.1. We observe that, in Example 2.1, Δ is the penultimate $\Delta \equiv 0 \pmod{4}$ of ERD-type having C_{Δ} of exponent 2 (see[4]). By results of [4], if there is an ERD-type of exponent 2 with $h_{\Delta} \geq 32$ then it would be a counterexample to the Riemann hypothesis.

Another example is

Example 2.2. Let $\Delta = 2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 = 1,021,020$ where $h_{\Delta} = 32$ then by a similar kind of anlysis as that given in Example 2.1 we get from Theorem 2.1 that and

$$C_{\rm A} = \langle \mathcal{Q}_{\rm 3} \rangle \, \times \, \langle \mathcal{Q}_{\rm 5} \rangle \, \times \, \langle \mathcal{Q}_{\rm 7} \rangle \, \times \, \langle \mathcal{Q}_{\rm 11} \rangle \, \times \, \langle \mathcal{Q}_{\rm 13} \rangle.$$

Example 2.3. Let
$$\Delta = -4 \cdot 3 \cdot 5 \cdot 7 \cdot 13$$
 then $h_{\Delta} = 16$ and, as above $C_{\Delta} = \langle \mathcal{Q}_3 \rangle \times \langle \mathcal{Q}_5 \rangle \times \langle \mathcal{Q}_7 \rangle \times \langle \mathcal{Q}_{13} \rangle$.

We have sufficient data to leave the reader with

Conjecture. The conditions in Theorem 2.1 are necessary and sufficient. In fact we are convinced that r = 1 must occur as in Example 2.1.

Acknowledgements. The author's research is supported by NSERC Canada grant #A8484.

References

- [1] H. Cohn: A Second Course in Number Theory. Wiley, New York (1962).
- [2] S. Louboutin: Continued fractions and real quadratic fields. J. Number Theory, 30, 167-176 (1988).
- [3] S. Louboutin, R. A. Mollin, and H. C. Williams: Class numbers of real quadratic fields, continued fractions, reduced ideals, prime-producing quadratic polynomials, and quadratic residue covers. Can. J. Math., 44, 824-842 (1992).
- [4] —: Class groups of exponent two in real quadratic fields (to appear: Proceedings of the third Canadian Number Theory Association Conference 1991, Oxford University Press).