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12. Orders in Quadratic Fields. I
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Abstract: The primary purpose herein is to provide sufficient condi-

tions for a quadratic order to have its class group generated by ambiguous

ideals, and we conjecture that the conditions are in fact necessary. These

conditions are given in terms of certain prime-producing quadratic polyno-

mials.
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1. Notation and .preliminaries. Let [c, ] denote the Z-module {cx
+ fly x, y, Z} and fix DO Z as a (positive or negative) square-free in-
teger. Set a 2 if Do --- 1 (mod 4) and a-- 1 otherwise. Define COo (a-
1 + Vo)/a, Ao (Wo- COo) 2= 4 Do/a, where a) o is the algebraic conju-
gate of Wo, and let wa fwo + h where f, h c Z. If we set
[1, coa] and A (ooa- Co a)=f2Ao then ga is an order in Q(-)
Q(v0) having conductor f, and fundamental discriminant A o. Moreover DO is
the radicand; i.e., the square-free kernel of the discriminant A. It is

well-known (e.g. see [1]) that I is a non-zero ideal in Oa if and only if
I [a, b + cooa] where a, b, c, Z with c lb, c la, and aclN(b
where N is the norm from Q(/-) to Q i.e., N(a) a. I is called primitive
if c 1, and a > 0. In this case a is the smallest positive integer in I and
a N(I) (Oa" I). A primitive ideal I can be written as I [a, b
with 0 --< b -< a. An ideal I in a is called regular if 0
--I}. All regular ideals are invertible. Note that an ideal I is invertible if
there is an element 7" I such that gcd(f, N(’)) 1, (e.g. see [1, Theorem
7, p.122]). Thus if gcd(f, N(/)) 1 then I is invertible. We denote equiva-
lence of ideals by I ] (by which we mean that there are non-zero elements
c and de of Oa with 1I cr), and we denote the group of equivalence
classes by Ca (and note that Ca N Pic ). Let h be the order of Ca’i.e., the
class number of . We denote the exponent of Ca by e" i.e., the smallest posi-
tive integer e such that IeN 1 for all I in C. Also principal ideals gene-

rated by a single element c are denoted by (c). We denote finally

f/-zi/3 fz < oM /A/5 ifA >0.
The following is well-known, (e.g. see [1, Theorem 11, p.141]).

1991 Mathematics Subject Classification" 11Rll, 11R29.



46 R.A. MOLLIN [Vol. 69(A),

Theorem 1.1. Every class in C contains a regular, primitive ideal I with
N(/) < M.

Based upon the above, the following improves upon Theorem 2.7 of [2].
Theorem 1.2. Ca is generated by the primitive regular prime ideals with

N(N) < M.
Proof. By Theorem 1.1 there is an ideal I in each class of Ca with

N(/) < Ma. Each such ideal is divisible by a primitive, regular prime ideal, and N() -< N(/) < M. The result now follows.
We recall finally that, an Extended Richaud-Degert type radicand (or sim-

ply ERD-type) is one of the form g + r where 4g 0 (mod r).
2. Ambiguous ideals and quadratic polynomials. All of the above nota-

tion is in force throughout. First we need the following.
Definition 2.1. Let q be a positive square-free divisor of A0 with

gcd(q, f) 1, then F,q(x) qx + (c 1)qx + 4- ((c 1) q A) where

c 1 if 4q divides A and a 2 otherwise.
To obtain the main result we first need a technical result which general-

izes [3, Lemma 3.1, p.830].
Lemma 2.1. Let q >_ 1 be a square-free divisor of Ao with gcd (q, f) 1.

If p is a prime then F,(x) =- 0(mod p) for some integer x >- 0 if and only if
(A /p) 1 and p does not divide q.

Proof. If (A/p) 4: 1 and p is an odd prime then there exists an inte-
ger x such that A =- q(2x + a- 1) (modp); i.e., F,q(x) qx +
qx(a- 1) + 4-((a- 1)q-A) _= 0(modp). Ifp 3 then either x= 0

or x i suffices.
Conversely, if F,q(x) --- 0(mod p) then A --- [q(2x 4- c 1)] z (mod p)

whence (A/p) : 1. Also if p divides q then p 2 is forced and it is easy
to see that this leads to a contradiction.

Now we provide a proof of the main result.
Theorem 2.1. Let q 1 for 1 <-i <-n be pairwise relatively prime,

square-free divisors of Ao with gcd(f, q) 1 for all such i. For each prime p
< M with (A/p) 4: 1 andp 4: qfor any positive i<-- n, assume that the
following both hold.
(1) There is a q II q for some z3 - {1, 2,... ,n} such that lF,q(x)[ pr
for some integer x >_ O, and some r >_ 1, where r is not divisible by any unrami-

fled primes
and,
(2) If r > 1 then there exists a t IIe2 q with s

_
{1, 2,... ,n} such that

IF,t(x) r for some integer x >_ O. Then C {1, ,... ,}, where is
the unique -ideal over q.

Proof By Theorem 1.2, C is generated by the primitive, regular prime
ideals with N() =p < M and (A/p) 4: 1. If p 4: q for any positive
i <-- n then, by hypothesis (1), there is a q II q for some s3

___
{1, 2,..., n}

such that [F,(x) pr for some integer x (with the observation that, by
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Lemma 2.1, p does not divide q). Therefore -(q(2x + a- 1)- A/q)

pr. Thus, 1/4 [(q(2x + a- 1)) A] pqr. Now, set
qxif a-- 1,

|qxq- (q-- 1)/2 if a---- 2 andqisodd,b
! q(2x + 1)/2 if a 2 and q is even.

Let , and . be a-ideals over q, r and t respectively. Hence
[Dq, b wa] is a primitive, regular ideal with N(b q- toa) pqr; i.

e., 1 since, in fact, 5 (b -t- toa). Similarly, from hypothesis (2)
we get that . 1. Thus, . and the result follows.

Now we illustrate the above with an example.
Example 2.1. Let A 4" 25935 4" 3" 5" 7" 13" 19, then [MaJ 144,

ha 16 and Aa L(M 1)/2J 71. Let ql- 3, q. 5, q3 7 and
q4 13. We may verify that other than these q’s the non-inert primes
p < Ma are in the set .3 {2, 19, 29, 31, 41, 43, 67, 71, 79, 89, 97, 101,
103, 107, 109, 139}. We verify this for example by looking at a print out of
the divisors p < Ma of. Fa,l(x) for 0 <- x -< A using Lemma 2.1. Moreover,
from a listings of all Fa,q(x) for all divisors q of 3" 5" 7" 13 and 0 <-- x
_< A we glean from Theorem 2.1 that

q x F,. (x) p
23

1365 0 19 19
114 1 29 29
266 0 31 31
39 4 41 41
30 5 43 43
5 32 67 67

210 0 71 71
91 2 79 79
190 0 89 89
182 0 97 97
26 6 i01 i01
3 54 103 103

95 190 107 107
21 8 109 109
65 2 139 139

Therefore,

Ca {1, 2’ 3’ 5’ 7’ 13}’ but 2 7 SO,

Ca <3> x <> x <7> <13>, since ha 16.
Remark 2.1. We observe that, in Example 2.1, A is the penultimate

A ----0(mod 4) of ERD-type having Ca of exponent 2 (see[4]). By results of
[4], if there is an ERD-type of exponent 2 with ha _> 32 then it would be a
counterexamp]e to the Riemann hypothesis.

Another example is
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Example 2.2. Let A 2’3" 5" 7" 11" 13" 17 1,021,020 where

h 32 then by a similar kind of anlysis as that given in Example 2.1 we
get from Theorem 2.1 that and

CA--<3> X <5> X <7> X <11> X <13>.
Example 2.3. LetA 4" 3" 5" 7" 13 then h 16 and, as above

CA-" <3> X <5> X <7> X <13>.
We have sufficient data to leave the reader with
Conjecture. The conditions in Theorem 2.1 are necessary d suffi-

cient. In fact we are convinced that r 1 must occur as in Example 2.1.
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