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Abstract: The primary purpose herein is to provide sufficient condi-
tions for a quadratic order to have its class group generated by ambiguous
ideals, and we conjecture that the conditions are in fact necessary. These
conditions are given in terms of certain prime-producing quadratic polyno-
mials.
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§1. Notation and preliminaries. Let [a, 8] denote the Z-module {ax
+ By :x,y, € Z} and fix D, € Z as a (positive or negative) square-free in-
teger. Set 0 = 2 if D, = 1 (mod 4) and ¢ = 1 otherwise. Define w, = (¢ —
1+ /Dy /0o, A, = (w, — @,)° = 4 D,/ 0°, where @, is the algebraic conju-
gate of w,, and let w, = fw, + h where f, h C Z. If we set 0, = [1, fw,] =
(1, w,] and 4 = (w, — @,)> = f°A, then O, is an order in QWA) =
Q(/D,) having conductor f, and fundamental discriminant A,  Moreover D, is
the radicand; ie., the square-free kernel of the discriminant A. It is
well-known (e.g. see [1]) that I is a non-zero ideal in O, if and only if
I=[a, b+ cw,] where a, b, ¢, € Z with ¢| b, c|a, and ac| N(b + cw,),
where N is the norm from Q(/4) to @ ; i.e., N(a) = aa. I is called primitive
if c=1, and @ > 0. In this case a is the smallest positive integer in I and
a= N) = (0,:1I). A primitive ideal I can be written as I = [a, b + w,]
with 0 < b < a. An ideal I in 0, is called regular if 0, = {a € Q(/A) : al
C I}. All regular ideals are invertible. Note that an ideal I is invertible if
there is an element 7 € I such that gcd(f, N(7)) = 1, (e.g. see [1, Theorem
7, p.122]). Thus if gcd(f, N(I)) = 1 then [ is invertible. We denote equiva-
lence of ideals by I ~ J (by which we mean that there are non-zero elements
a, and a, of O, with a,] = a,J), and we denote the group of equivalence
classes by C, (and note that C, = Pic 0,). Let h, be the order of C,; i.e., the
class number of O,. We denote the exponent of C, by e,; i.e., the smallest posi-
tive integer e, such that I° ~ 1 for all [ in C,. Also principal ideals gene-
rated by a single element a are denoted by (a). We denote finally
vy—A4/3if4<0
yA4/5 if A > 0.
The following is well-known, (e.g. see [1, Theorem 11, p.141]).
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Theorem 1.1. Every class in C, contains a regular, primitive ideal I with
N < M,

Based upon the above, the following improves upon Theorem 2.7 of [2].

Theorem 1.2. C, is generated by the primitive regular prime ideals P with
N@®) < M,.

Proof. By Theorem 1.1 there is an ideal I in each class of C, with
N(D) < M,. Each such ideal is divisible by a primitive, regular prime ideal
P, and N(P) < N(I) < M,. The result now follows.

We recall finally that, an Extended Richaud-Degert type radicand (or sim-
ply ERD-type) is one of the form ¢ + # where 4/ = 0(mod 7).

§2. Ambiguous ideals and quadratic polynomials. All of the above nota-
tion is in force throughout. First we need the following.

Definition 2.1. Let ¢ be a positive square-free divisor of 4, with

ged(q,f) =1, then F,,@) =gz’ + (@— Dgz + 741—(1- ((@—1) ¢* — 4) where

a =1 if 4q divides 4 and @ = 2 otherwise.

To obtain the main result we first need a technical result which general-
izes [3, Lemma 3.1, p.830].

Lemma 2.1. Let g = 1 be a square-free divisor of A, with gcd(q, f) = 1.
If p is a prime then Fy () = 0(mod p) for some integer x = 0 if and only if
(A/p) + — 1 and p does not divide q.

Proof. 1f (A/p) # — 1 and p is an odd prime then there exists an inte-
ger x such that 4 =¢’@Qzr+a— 1)’ (modp); ie, F,,(x) = gz’ +

gr(a — 1) + 4Lq ((@a—1q°— 4) =0(mod p). If p =3 then either x =0

or x = 1 suffices.

Conversely, if Fy ,(x) = 0(mod p) then 4 = [¢(2x + a — 1)]1° (mod p) ;
whence (4/p) #+ — 1. Also if p divides ¢ then p = 2 is forced and it is easy
to see that this leads to a contradiction.

Now we provide a proof of the main result.

Theorem 2.1. Let g; 21 for 1 < i< n be pairwise relatively prime,
square-free divisors of A, with gcd(f, q;) = 1 for all such i. For each prime p
< M, with (A/p) # — 1 and p # q; for any positive i < n, assume that the
following both hold.

(1) There is a =, 4 q; for some S S {1, 2,...,m such that | Fy,(x) | = pr
Sfor some integer x = 0, and some v = 1, where v is not divisible by any unrami-
fied primes

and,

(2) If r > 1 then there exists a t = ;.3 q, with 3 S {1, 2,...,n} such that
| F, . (x) | = 7 for some integer x = 0. Then C,=11,2,...,2,}, where 2, is
the unique 0 ,-ideal over q;.

Proof. By Theorem 1.2, C, is generated by the primitive, regular prime
ideals & with N(®) = p < M, and (4/p) # — 1. If p # g, for any positive
i < m then, by hypothesis (1), there is a ¢ = I, ¢, for some S S {1, 2,...,n}
such that IFA‘q(x) | = p7 for some integer x (with the observation that, by
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Lemma 2.1, p does not divide ¢). Therefore %(q(Zx +a—1°—4/¢ =

pr. Thus, % [(g2x + a — 1))® — A] = pqr. Now, set

grifa =1,

p=19x+ (g—1/2if =2 and ¢ is odd,

qQ2x + 1)/2 if @« = 2 and q is even.
Let 2, and J be O,-ideals over ¢, 7 and ¢ respectively. Hence
PAR = [pq, b + w,] is a primitive, regular ideal with N(b + w,) = pgr; i.
e, PAR ~ 1 since, in fact, P2R = (b + w,). Similarly, from hypothesis (2)
we get that TR ~ 1. Thus, ? ~ 72 and the result follows.

Now we illustrate the above with an example.

Example 2.1. Let 4 = 4-25935 =4-3-5-7:13-19, then [MAJ = 144,
hy, =16 and A, =M, —1)/2] =71. Let ¢,=3,¢=5,¢,=7 and
g, = 13. We may verify that other than these ¢,’s the non-inert primes
b < M, are in the set S = {2, 19, 29, 31, 41, 43, 67, 71, 79, 89, 97, 101,
103, 107, 109, 139}. We verify this for example by looking at a print out of
the divisors p < M, of F,,(x) for 0 < x < A, using Lemma 2.1. Moreover,
from a listings of all |F4,q(x) | for all divisors qof 3:5-7-13 and 0 < x
< A, we glean from Theorem 2.1 that

q z Fy (@) pPEY
7 23 2 2
1365 0 19 19
114 1 29 29
266 0 31 31
39 4 41 41
30 5 43 43
5 32 67 67
210 0 71 71
91 2 79 79
190 0 89 89
182 0 97 97
26 6 101 101
3 54 103 103
95 190 107 107
21 8 109 109
65 2 139 139
Therefore,

C, =11, 2, 2,, 2, 2,, 2,3}, but 2, ~ 2, so,
C,=K2p X (2 x <2, X L2, since h, = 16.
Remark 2.1. We observe that, in Example 2.1, 4 is the penultimate
A = 0(mod 4) of ERD-type having C, of exponent 2 (see[4]). By results of
[4], if there is an ERD-type of exponent 2 with A, = 32 then it would be a
counterexample to the Riemann hypothesis.
Another example is
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Example 2.2. Let 4 = 2°.3.5-7-11-13-17 = 1,021,020 where
h, = 32 then by a similar kind of anlysis as that given in Example 2.1 we
get from Theorem 2.1 that and

C,=AK2p X K9 X <2 X 2, X 2,
Example 2.3. Let 4 = — 4-3-5-7-13 then h, = 16 and, as above
C, =<K2) X K2 X <2, X {2,p.

We have sufficient data to leave the reader with

Conjecture. The conditions in Theorem 2.1 are necessary and suffi-
cient. In fact we are convinced that # = 1 must occur as in Example 2.1.
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