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Some Examples of Global Gevrey Hypoellipticity
and Solvability

By Todor GRAMCHEV *), Petar POPIVANOV *), and Masafumi YOSHINO*

(Communicated by Kiyosi IT(5, M. J. A., Dec. 13, 1993)

1. Notations and results. Let T’= R/Z be the two dimensional
torus, where R and Z are the sets of real numbers and integers respectively.
We denote the variables in T by (x y) and the differentiations on by Ox
/x, and y /y. We denote by (T) the set of smooth functions
r2"on For a2 1 we say that a function f(x, y) C (T) belongs to the

Gevrey class G(Te) if for some C > 0
(.) " " C+"+ ), N, (x y) T,ax af(x y) (rain for all m n
with the convention that G(Te) C(T), if a= . We denote by
G(T) the space of ultradistributions of class on learly, G (T2) is
the set of analytic functions on and G (T) coincides with the class of

Tperiodic hyperfunctions on (cf. [6] and [9]).
TA differential operator P is said to be globally G(T) solvable on if

for every f Ga(T) there exists an ultradistribution u Ga(T)" satis-
fying Pu f We say that P is globally Ga(Tz) hypoelliptic if u
G(T) when Pu G(T) and u Ga(Te) ". The operator P is said to be

Glocally solvable at a point p T if there exists a neighborhood U of p
such that for every f G(, there exists an ultradistribution u G(
such that Pu f in U. Similarly, we say that P is locally G hypoelliptic at
p if the following condition holds" if a point p does not belong to G a

singular

support of Pu then p does not belong to Ga
singular support of u.

In this note we shall give examples of first order operators with real
coefficients on tori whose global properties are exotic in the following sense"

Their global hypoellipticity and solvability in Gevrey class depend on Gev-
rey index a. This makes a clear contrast to the known local results for oper-
ators of real principal type (cf. [5] and[l]). In fact, the first order analytic
pseudodifferential operators of real principal type are not locally Ga

hypoel-
liptic for any 1 a and they are locally Ga

solvable for all 1, a
(cf. [5] and [9]). In the global case, we have the following

Theorem 1 (Global hypoellipticity). For every number , 1 we
can find infinitely many linearly independent real-valued functions a
G( such that the @erators P - a(x)8 are globally G(T) hypoelliptic

if I 0 , while they are not globally G (Tz) hypoelliptic if < 0 .
Theorem 2 (Global solvability). For every number , 1 we can
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find infinitely many linearly independent real-valued functions a GI(T) such
that the equations (Sx--a(x)Ou)u--f,f G(T2) are always G(T)
solvable for f such that f(x, y)dxdy 0 if 1 <_ 0 <- a, while they

are not G(T) solvable for some f G(T) such that f(x, y)dxdy

=Oifa< 0<_

Remark. Theorems 1 and 2 are valid if we replace the inequalities
1 0<-- a and a< 0--< c by 1<_ 0< a and a--< 0<-- co, respectively.
These facts can be proved by use of (ii) of Lemma which follows.

2. Proof of theorems. Theorems 1 and 2 are pr,oved by constructing
Liouville numbers with prescribed approximation rate by rational numbers.
More precisely, we have

Lemma. The following two properties are valid"
(i) For a given a > 0 we can find an irrational number t such that for every

0 < e<< 1 there exists C > 0 satisfying
(2.1) P tql C exp(- eqTM) for any p Z, q N
while for any a’, 0 < a < a" and any c > 0 there exist infinitely many
p Z and q N, p and q relatively prime, such that
(2.2) p- tq K c exp(-- eq/’).

(ii) For a given a > 0 we can find an irrational number t such. that for ev-
ery i <-- 0 < a and every 0 < t << 1 there exists C > 0 satisfying
(2.3) P tq C exp(- eq/) for any p Z, q N
while for any c > 0 there exist infinitely many p Z and q N, p and q re-
latively prime, such that
(2.4) P- tq K c exp(-- eq/a).
All two types of numbers exhibited above, have the density of continuum.

Proof We use the arguments of the paper of J. Leray and C. Pisot [8].
We shall give a sketch of the proof. We use the notations of [8]. First we
observe that, if t exists we may assume 0 < t 1.

We shall define t by a continued fractions; t- [a, a,...,an,...]. Fol-
lowing (1.3) in [8] we introduce two sequences {Pn} and {qn}"
(2.5) q 0, q 1, qn+e anqn+ "+" qn,
(2.6) p 1, p 0,

By (1.1) of [8], for every integer q such that qn- <- q qn+x we have

(2.7) inf [p--

where the, equality is attained for (q, p) (qn-, Pn-) and (qn+, Pn+).
Therefore we have, for q._ _< q <:
(2.8) inflP- tq >-- inf (I P- tq._ I, P.+ tq.+ I},
where the equality is taken for q- qn_ and q qn+. On the other hand we
have

1
(2.9) P.+- tq.+

with an being defined by the relation (see (1.2) in [8]) t (anPn+ + Pn)/
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(cnqn+l + qn)" One checks easily that cn an + 1/cn+l, cn > 1 (see (1.1)
in [8]).

Let us assume that ak, 0 --< k n- 1 are given. Then by (2.5) we de-
fine qn+ Next we choose and fix kq+/(ln q+))], where
[r] stands for the integral part of r R. On the other hand we recall (see
(1.1) in [8] that a a. + 1/an+ and a > 1. Then we easily see that for
a given 0 < 6 << 1 the quantity aq+ + qn is estimated from below (respec-
tively from above) by (a,- 6)qn+ (respectively by (an + )qn+) when n is
sufficiently large. Because of the consecutive construction of qn+e and a+
we have that t is well defined and that there exist two positive constants C
and Ce such that

1/a 1/a

Cq+ exp
q"+

,q+ + q Cq+ exp In q+In q+
which proves part (i) of the lemma.

Concerning part (ii), we choose an [exp qn+ for n sufficiently
large. Then, by the last two-sided inequality we have the desired exponential
growth.

The final statement for the density follows from the fact that all three
estimates do not change when we replace an by an + 1 for infinitely many
nN.

Sketch of the proof of Theorems. We note that u(x, y) G(T) if and
only if for some c > 0 and C > 0 the following estimate is true

[8:(x, )l K C*+’(kl) exp(- c /), k N, V e Z,
where (x, ) denotes the partial Fourier transform of u with respect to y.
By the partial Fourier transform with respect to y the equation Pu "= (x
a(x))u =f is equivalent to (Sx--ia(x)v) =f. We set 2v

a(z)dz, A(x) a(t)dt. We assume that ra is positive and

irrational. Then the periodic solution to the equation f is given by
(.0

a(x, V) e’() e

1 e’:"
e (t, ) dt + e- (t, ) d

for O. If a(x) is real-valued this expression implies that P is globally

hypoelliptic and solvable in G for f such that f(z, )dzd 0 if

and only if for every 0 < s << 1 there exists C > 0 such that

(. r-
Indeed, (2.11) follows from the estimate of the denominator 1- e in

(.10.
Hence our theorem is proved if we choose c to be a number t satisfying

the statement (i) of Lemma and we choose a(x) such that a(x)dx 2c.

This proves Theorems.
Remark. Let t be a transcendental number constructed in the proof of
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(i) of Lemma with o’= 1. Then the equation Pu "= (Ox- tOv)u-f is

solvable for f GI(T2) such that f(x, y)dzdy- O. On the other

hand, for every a > 1 it is not solvable for some f G(T) such that

--fofof(c, y)dxdy O. We remark that in view of the definition of

periodic hyperfunctions the solution exists in the class of periodic hyper-
functions even in the case > 1 (el. (2.11) and Proposition 2.4.4 of [6]).
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