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Introduction. Let W be the space of continuous functions on Ra

vanishing at the origin. In this paper an element of W is called an environ-
ment. Given an environment W, we consider a diffusion process Xw
{X(t), t _> 0, P, x Ra} with generator

1 __1 w___2 (A-- VW’V) -e e
k--1

When W is bounded, the result of Nash [8] for fundamental solutions of pa-
rabolic equations guarantees the existence of a diffusion process X with
generator

oFor a general W we still have a nice diffusion process XW (e.g. see [41) and
hence Xw can be constructed from X through a random time change. With-
out any assumption on the behavior of W(x) for large Ixlthe process Xw
may explode within a finite time, but such a case is excluded automatically
since we are interested in the recurrence of X. We consider the probability
measure P on W with respect to which {W(z), x Re, P)is a L(vy’s
Brownian motion with a d-dimensional time. The collection of diffusion pro-
cesses 1" {Xw)in which W is allowed to vary as a random element in
(W, P)is called a diffusion in a d-dimensional Brownian environment.
When d 1 this was considered by Brox [11 and Schumacher [91 as a diffu-
sion model exhibiting the same asymptotic behavior as Sinai’s random walk
in a random environment ([101); see also [11] for some refined results. Re-
cently Mathieu [7] obtained some very interesting results concerning a long
time asymptotic problem for X in the case d -> 2. Motivated by [7] the pre-
sent paper was written.

In this paper we prove that XW is recurrent for almost all Brownian en-

vironments W in any dimension d, namely, for any nonnegative Borel func-
tion f on R such that f> 0 on a set of positive Lebesgue measure the
equality

P,{fof(X(t))dt- co I 1, x Ra,
holds for almost all W with respect to P. In [3] Fukushima, Nakao and Takeda
discussed the same problem but with the replacement of W(x)by I(I
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where W(t) is a Brownian motion with a 1-dimensional time.
To obtain our result we employ Ichihara’s recurrence criterion ([4])

which, in the present special case, asserts that X (W is fixed) is recurrent
if

-1

S-1.where dO is the uniform distribution on We can also employ Fukushi-
ma’s recurrence criterion ([21) which, in the present special case, asserts that

X (W is fixed) is recurrent if there exists a sequence {,} such that 0 <--
<-- 1, lim u, 1 a.e. and lim $(u,, u,) 0, where 8(u, v) is the Dirichlet
form associated with Xw, namely,

$ (, v) - I7. I7 e-’dx.
Since it is obvious that X is recurrent if and only if X, is recurrent, either
criterion yields our result. But for the verification of these criteria we need
some information on the asymptotic behavior of W(x) for large Ixl. A key
point in obtaining this informaiton is to consider the one-parameter family
{Tt, t R} of measure preserving transformations on (W, P) defined by
(1. 3) and then to use its ergodicity.

1. Brownian motion with a d-dimensional time. Let d _> 2 and as be-
fore let P be the probability measure on W such that {W(x), x Rd, P} is
a Brownian motion with a d-dimensional time ([6" p. 277]), that is, a Gaus-
sian system with
(1.1) E{W(x)} O, W(O) O,

1
(.2) E{W(x) W(y)} {] x I+ y Ix y ]}.

For each t R and W Wwe define an element TtW of Wby
t/2 nd

(.3) (T,W)(x) =e- W(e’x), x e
Then {Tt, t R} is a one-parameter family of measure preserving trans-
formations on the probalility space (W, P). Using (1. 2) we can easily com-
pute the covariance matrix of

t/2 t/2 t/2
e W(etxl), e W(etx2),’",e W(e xm), W(x;), W(x)," ",W(x)

for fixed t R and xl,...,x,, x;,...,xn Rs, and the following lemma can
be proved in the same way as in It6 [5].

Lemma 1. { Tt, t R} is mixing and hence ergodic.
Next let 0 < a < b, put K {x Rs

"a <_Ix[<_ b} and consider the
Banach space B -- C(K), the space of real valued continuous functions on K,
and the real Hilbert space H-- L(K, dx). The inner product in H is de-
noted by (’, "). Regarding W- {W(x), x K} as an H-valued random
variable, we denote by ?" the probability distribution of W/. Since every
Borel set in the space B is also a Borel set in the space H and since W is
regarded as a B-valued random variable, we have ’(B) 1. 7" is a Gaus-
sian measure on H with

(1.4a) e r(dg) E exp f(x) W(x)dx exp - Af, f) f H,
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(1.4b) Af(x) -ff {I x + Y Ix y I) f(y)dy.

For Af0 with f0 H we define the C-transform )’t by )’t(/-) )’({g g
+ F}). Then the following Cameron-Martin formula is easily verified
by using (1.4).

_1(1.5) ’,(dg) exp{(fo, g) - (Afo, fo)}7"(dg).
Lemma 2. Any nonempty open set in the space B has a positive ?-measure.
Proof. We first prove that the range R (Af:f H) is dense in B.

If this were not true, there exists a finite signed measure p # 0 on K such
that

fAf(x)/2(dx) =0 for all f H.(1.6)

Since the left hand side of (1.6) equals (f, g) where

g(x) -ff {t x] + Y Ix y 1}/2(dy) H,

(1.6) implies g 0. Therefore regarding /2 as a signed measure in Rd
we

have

(1.7) , ,-ff {1 x] + Y] x y l}/2(dy)/2(dy) O.

In the same way as in the proof of Theory?me 58 of [6: p. 276] we can prove
that the left hand side of (1. 7) equals

const, foe[ e i-d-1 fi() fi(0) ] d,
where fi() is the Fourier transform of/2. Therefore/2 must be concentrated
on {0}. But this is impossible because 0 K and hence R must be dense in
B. Next we notice that the whole space B, which has )’-measure 1, can be
expresses as a union of a countable number of open balls of the form
B() { e B :[[ I[oo < s}, e R, s > 0 being arbitrary but fixed.
On the other hand by the Cameron-Martin formula (1.5))’(B())=
r_,(B(0)) > 0 if and only if r(B(0)) > 0 provided that R. Therefore
we must have )’(B()) > 0 for all R. This implies the assertion of the
lemma.

2. Reeurrenee of Xw. Since our result in the 1-dimensional case is
easily obtained from a general theory of 1-dimensional diffusion processes,
we assume d _> 2.

Theorem 1. XW is recurrent for almost all Brownian environments W.
Proof. It is enough to prove that X, is recurrent for almost all Brow-

nian environments W and, according to Ichihara’s criterion ([4: Theorem A])
it is also enough to prove that

(2.1) _ e-W(dO r-e/dr oo, P-a.s.

If we put M(t) min{(TW) (0) 0 Se-}, then
(2.2) the left hand side of (2. 1)
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(2-d)t t/2
e - exp(-- e (TtW) (O))dO dt

(2-d)t
e exp{et/2M(t)}dt > la,oo (M(t))dt,

t/2
provided that a > 0 is chosen so that (2 d)t + ae -> 0 holds for all t

_
0. Next take K {x Rd" 1 <- ]xl <- 2} and consider B, H and 7" as in
the preceeding section. Since F { B min ((x) xl 1) > a} is an
open set in B, we have 7"(F) > 0 by Lernma 2. The ergodicity of {Tt, t R}
now implies

lim T- l(,(M(t))dt= E{I(,(M(O))} r(F) > O, P-a,s.,

and hence l(,,(M(t))dt oo, P-a.s., which combined with (2.2)

proves (2. 1).
Remark 1. Xw is null-recurrent (P-a.s.) in the sense that m(dx)

e-dx is an invariant measure for X with m(Re) c.
Remark 2. Fukushima’s criterion can also be used for proving

Theorem 1; in fact, by virtue of Lemmas 1, 2 it is still easy to prove the
existence of a sequence of radial functions , in C(Re) such that 0 --< ,
<_ 1, lim , 1 a.e. and $(,, ,) 0. This argument also proves the re-
currence of Xt for almost all Brownian environments W.

Remark 3. X_Iw is recurrent for d 1 and transient for d >_ 2 for
almost all Brownian environments W. The proof in the case d-> 2 is as
follows. According to Theorem B of [4] the transience of X_lwi (and conse-
quently of X_lwI) follows if one proves that, for almost all Brownian environ-
ments W,

(2.3) e
-IW()l r-d+l dr < oo

for 0 belonging to some subset (which may depend on W) of Sd- with a
positive uniform measure. But this can be proved by showing that the
expectation (with respect to P) of the left hand side of (2. 3) is finite for each
fixed 0.
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