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78. QGauss Decomposition of Connection Matrices and
Application to Yang-Baxter Equation. 11

By Kazuhiko AOMOTO™ and Yoshifumi KATO**

(Communicated by Heisuke HIRONAKA, M. J. A., Oct. 12, 1993)

We follow the same terminologies as in [1].

1. Gauss decomposition of G. Case where m = 2. The matrix G = G(x
| @) depends on x,/x; and of size n + 1. We denote by g,_;n_; = &n—in—; s
/x,) its entries as
(1.1) Gnoiney = (Vi iireg Yy, )om
where the corresponding summits & = v:,,_,. and n = v;,_; are given by &,
_ x1q1+(k—l)7‘ (1 S k S l), x2q1+(k—i-1)7 (1 + i S k S n) and ﬂk — xlq—ﬁ—(k—l)T
A< k<), 2" "™ A+ j < k < n) respectively.

First we present a few basic properties of the principal connection ma-
trix G.

Lemma 1.
(1.2) 6 |a) ='Gxla) =57 - G| a): S,
where 'G(x | @) denotes the transposed matrix and S’;, denotes the matrix with
only non-zero (i, n — 1) th components a,-,n_,(%),

— o —2ritn—i) _y2i(n—i) (~n+20) +i(n—i) e(q_nu);ﬁ(q(l_i)ru);
ai,n-i(u) =u q 1-—-dr -1 1-(n—i-D7y, -1

6(q u );6(q u )y

for t = min(i, n — ). In particular a,,(w) = a,,(u) = 1.
(1.3) S, = A7'S. 1A, for A = DiaglA,,. . .,4,]

i (i x 7‘_ e i . —i __.'f
where A, = A,(x,/z) = 6(¢" "z, /2); 0(¢g"" sz/xl),{?zy rin=d = ri-ii ¥
1

and S, denotes the matrix with only non zero (i, m — 1) th components 1 so that
2

St =1.

(1.4) G(x| al)—l — (q2n(32+3)/(1 _ q)zn) M-
Gax'|—a,—28+2a— DG —1) - M’
wheve M and M’ denote the diagonal matrices M = Diag [y, . . .,u,], M’ =
. , , Z, |\ Xy Zy Xy ;o
Diag [¢t5, . . . 5] such that y,_; = <El—> ai<x—l> an—i(x—2>an—i,i<x_l)r Up—i =

(%) ” a,~<i—:> an_i<%>an_i,i(%>. Here a;(u) denotes
{G=DBr+72(i—DiGi+1)/3+7G-Di/2 | 0(‘]1+T)ie(qHB)iﬁ(qHﬂu)i

6 (1)'6(q") 0 (qu),
where 0(u); denotes the product O(u)O(ug’): - - O(ug"™"") and 6'QQ) =

(1.5) a;(u) = ¢q
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[dz(uu)]uﬂ = — ()%. Remark that a,,_,(w) * a,_, ,(u™") = 1.

We want to define the special cycles reg ¥;” ® ¥, ,(0 < i < #) which
play a central role in our discussion.

Definition 1. The cycle ¥;” ® Y,", is defined as the set of t € (C™)"
such that ¢, =2, "™ " A <j <), = g™+ 1<i<m
for v, € Z,. Its regularlzatlon reg Y, ® Y, , is constructed such that the
Jackson integral of <D,,2(t) over the cycle reg ¥;” @ ¥,7, can be obtained by
taking residues of @,,,2 () along the loci ¢, = xlq_ﬂ Nt =gt V7
(see for details [2]).

The cycles reg ¥, @ Y,", are characterized by the following asymp-
totics.

Lemma 2. For | x; | > | x, |, we have

@ n - (T —on\f 0 e /)
w6 [ enwe -~ () LAl
reg¥7 @Y}, 1 0(q x,/x,)

( )(al + B + n— z) B;'F)‘(al + 1(1 _ 27)) xa1+ cta;+if+(n—i)i xzaul+o.-+a”.

The meaning of Gauss decomposition can be explained as follows. In the
homology Hn((C,*)", @,(,','2), 0,) associated with Jackson integrals (2.4) in [1],
we have two kinds of relations,

(1.7) Yipoi = 2, 0 &n-in-; €8 ¥y
(1.8) regV, QY , =>,_,_, o _( i Teg Y.,
(]-9) = OSszwn i,n—j Yn —in—j*

These identities give the Gauss decomposition stated in [1]. Concerning explicit

d o o™ W ﬁl d wX¥™ = ¥m ﬁl
escription of w, ;, ;= W,_;,_; z, a)and Wy, i = Wy_jp; z, o,

n—i,n—j

in terms of theta rational functions we can state the following theorem.
Theorem 1. The elements w,(,"_)i,n_j and a):i’:fn_,. are expressed in terms of
theta monomials as follows.

) Ty ~Ly-Dr-itn-ir(@,—m+i-D7)+C
(1.10)wn,n_i<x—1|al> Zun- t(xla,)_(l_q)n —nn r=in—D7(@;—n+i-17)+Cyp

. <ﬁ>t(a,—(i—1)7) (q)in 0(qa1+2+3_(n_1)r-1'2/-Z‘l)iﬁ(ql+r)i
X, 0(q1+al—2(n-—1)r)n0(q2+5x2/xl) .0(q1+7)i

. 0(qa‘+2+ﬁ_(”_1)7)n_i 0(q1+r)n—i 0(q1+<1 T, /T)7

0G0 s 06 "2, /2);

jor Co=—2nti—DeEn— 07 =" g, — - P +

na,(1+ (n—1)7).
n x 1
(1.11) @, (flal) = 0" ¢z, /3, |y + i — 27)
1

z i X, \2U=DB 2i(B%+8)
(1.12) @y, (x—2|a1> =Q—-9™ (;2) q
1 1

v (22 a7t (B2 o (P L) 0™ (22| a
a; z, Api , a; z, Ayj z, W, z, Ay ),
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fora, = —a,— 28+ 2m—1)(r — 1). In particular we have a):,"; = w:(nm
= 1.

Indeed (1.10) is an immediate consequence of [1](3.4) and (3.5). (1.11) is
obtained from (1.10) by reducing it to lower dimensional Jackson integrals
with respect to the variables ¢, . . .,t, while t, = ¢ "z, .. . ,t,=
g PPy are fixed. (1.12) is obtained from (1.4) and (1.8) by the sub-
stitution £, — ¢, %,.. ., t,— £, .

Hence the one cocycle {W,, er} defined by [1](1.3) has the expression,
W, =1 and
(1.13) W,=80-S -7 =048, - (r,(QATN!
so that we have W, - o, W, = 1.

2. Yang-Baxter equation. Case where m2 = 3. As beforehand, G is of

. <m+n-1> <m+n—1
size X
m—1 m—1
ones in Lemma 1.
(2.1) Gx|a) = 57" Gxla)S,,

where the one cocycle {S7},cg, corresponds to a symmetric representation

) and has the similar properties to the

(2.2) Si= A7 S, (zA@™H ™
for a suitable diagonal matrix A(r). We can introduce the lexicographic
ordering into the set of partitions F = <f1,. . .,fm> as follows.

We say that {fi,...,f,> is greater than <{f/,...,f,> if and only if there
exists an integer # such that f, > f/, fru1 = fie1, - - < fu = fom. By using this
ordering we can define the lower and upper triangular matrices £ and o*
respectively such that the corresponding entries wy . and w}k,pr = 0 accord-
ing as F < F’ and F > F’ respectively. The cycles Zp = 255 p w}"} reg
Yo = 2pcp a):(}',) Y, give characteristic asymptotics of corresponding Jack-
son integrals [1](2.4) for le [> > | x,, | (see also [5] in relation to quan-
tum KZ equations). G has the Gauss decomposition and
(2.3) W™ =028/ (e = (A7) S (r(A™))
defines a one-cocycle. Under this circumstance,

Theorem 2. For two partitions F = {f,,...,f,> and F' = {f/,.. . ,f.> of
n we have the expression for the (F, F’) element w,.pp of the matrix W, =
((wr;F,F’))F,F’ as

(2.4) Wy.ppr = 6/1f'1. o .5fr-1f;-15/r+zf;+z. ) .5fm/m
xr
Wty e (—le la, + (it DA =2 + m—7r— 1B
= f = ).

The matrix W,(Z) = ((w;?:,j))f;:fo'” is of order f,+ f,.;, + 1, where f, .. .,

Joets frsar o o oS and f o f_1, frias . of o being fixed such that f; = f/,. ..,
fror = f7 1 foie = ffezs+ o o sSw = S This is the connection matrix for Jackson

integrals of the function (D;fz,@1 depending only on x,, Z,,,,
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2.5) 0L (tifit  F A 1<Kk<fid -+ )

=11 tak+(m FoDB+n—fy—eeem fr G/2) (/200 o
Frbeeot fyatlSES fitbee ot fro (tkqﬁ/x,)m(tkqﬁ/x_,ﬂ)m
@t /t).,
: H/1+-o-+fr-1+lsi<jsf1+“ R (ti - t'i)'

s+ fra1 (thj/ti)m

Hence the matrix W,”(x) = W,” (z,, z,,,) can be written as in (1.13),

where # and ¢, .. .,t, should be replaced by f, + f,.i, Lffbeedsy d1r + + os
Lrwe st fren respectlvely In this way we get the ome cocycle condition for

,r L<r<m-1 Which coincides with Yang-Baxter equation in view of (1.2)
and (1.4) in [1].
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