63. On the Class Number of an Abelian Field with Prime Conductor

By Ken-ichi Yoshino
Department of Mathematics, Kanazawa Medical University
(Communicated by Shokichi IYANAGA; M. J. A., Sept. 13, 1993)

1. Introduction. Let p be an odd prime. Let g be a primitive root modulo p and g_{i} the least positive residue of g^{i} modulo p for every $i \geq 0$. Let $\mu=(p-1) / 2$ and let $\zeta=\zeta_{p}=\cos (2 \pi / p)+i \sin (2 \pi / p)$ be a primitive p th root of unity. For every $i \geq 0$, we put

$$
\varepsilon_{i}=\frac{\zeta^{g_{i+1}}-\zeta^{-g_{i+1}}}{\zeta^{g_{i}}-\zeta^{-g_{i}}}=\frac{\sin \frac{2 g_{i+1} \pi}{p}}{\sin \frac{2 g_{i} \pi}{p}}
$$

These are cyclotomic units of $\boldsymbol{Q}\left(\zeta+\zeta^{-1}\right)$ and $\varepsilon_{\mu+i}=\varepsilon_{i}$ for each $i \geq 0$. Let E_{0} be the group of units of $\boldsymbol{Q}\left(\zeta+\zeta^{-1}\right)$ and E_{C} the subgroup of E_{0} generated by cyclotomic units, i.e., $E_{C}=\left\langle\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{\mu-1}\right\rangle$. Let h_{0} be the class number of $\boldsymbol{Q}\left(\zeta+\zeta^{-1}\right)$. Then it is well known that $h_{0}=\left[E_{0}: E_{c}\right]$. For every $i \geq 0$, we let $c_{i}=0$ or 1 according as ε_{i} is positive or negative.

Let L be a real subfield of $Q(\zeta)$ of degree m. We denote by E_{L} the group of units of L and by $E_{C_{L}}$ the subgroup of E_{L} generated by the cyclotomic units. We let $d_{i}=0$ or 1 by

$$
d_{i} \equiv \sum_{j=0}^{\frac{\mu}{m}-1} c_{i+m j} \quad(\bmod 2)
$$

for every $i \geq 0$. We note that if $L=\boldsymbol{Q}\left(\zeta+\zeta^{-1}\right)$, then $c_{i}=d_{i}$ for every $i \geq 0$ and that $d_{m+i}=d_{i}$ for every $i \geq 0$. We then define the matrix

$$
M_{L}=\left(d_{i+j}\right)_{0 \leq i, j \leq m-1}
$$

of degree m. Let $\rho_{L}=m-\operatorname{rank} \boldsymbol{F}_{2} M_{L}$, where $\boldsymbol{F}_{2}=\boldsymbol{Z} / 2 \boldsymbol{Z}$. Then it is easily shown that $\# E_{C_{L}}^{+} / E_{C_{L}}^{2}=2^{\rho_{L}}$, where $E_{C_{L}}^{+}$denotes the group of totally positive units in $E_{C_{L}}$.

In this note we shall give a generalization of Theorem 3 in Uchida [5]. That is, we shall prove the following

Theorem. Let l and p be two odd primes such that $p \equiv 1(\bmod l)$. Let $a \geq 1$ be the integer such that $2^{a} \|(p-1) / l$. Let K be the imaginary subfield of $\boldsymbol{Q}\left(\zeta_{p}\right)$ of degree $2^{a} l, K_{0}$ the maximal real subfield of K and L the subfield of K_{0} of degree l. Let h_{K}^{*} be the relative class number of K. Let $h_{K_{0}}$ and h_{L} be the class numbers of K_{0} and L, respectively. Suppose that 2 is a primitive root modulo l. Then the following are equivalent.
(i) $2 \mid h_{K}^{*}$,
(ii) $2 \mid h_{K_{0}}$,
(iii) $2 \mid h_{L}, \quad($ iv $) \rho_{L}=l-1$.
2. Lemmas. To prove our theorem, we need the following three lemmas.

Lemma 1. Let L be a real subfield of $\boldsymbol{Q}\left(\zeta_{p}\right)$ of odd prime degree l. Let f be the order of 2 modulo l. Then $\rho_{L} \equiv 0(\bmod f)$.

Lemma 2. Let K be an imaginary subfield of $\boldsymbol{Q}\left(\zeta_{p}\right)$. Then h_{K}^{*} is even if and only if $\rho_{K_{0}}>0$.

Lemma 3. Let L be a real subfield of $\boldsymbol{Q}\left(\zeta_{p}\right)$. Let F be a subfield of L such that L / F is a 2-extension. Then $\rho_{L}=0$ if and only if $\rho_{F}=0$.

Proof of Lemma 1. Let $\# E_{C_{L}} / E_{C_{L}}^{+}=2^{b}$. Then $b=l-\rho_{L}$, because $\# E_{C_{L}}^{+} / E_{C_{L}}^{2}=2^{\rho_{L}}$ as noted above. Let σ be a generator of the Galois group of L over \boldsymbol{Q}. Here we consider the homomorphism φ from $E_{C_{L}}$ into the direct sum of l copies of $\{ \pm 1\}$, which is defined by

$$
\eta \mapsto\left(\operatorname{sign}(\eta), \operatorname{sign}\left(\eta^{\sigma}\right), \ldots, \operatorname{sign}\left(\eta^{\sigma^{l-1}}\right)\right)
$$

where $\operatorname{sign}\left(\eta^{\sigma^{t}}\right)=\left|\eta^{\sigma^{i}}\right| / \eta^{\sigma^{i}}$ for each i. Clearly the kernel of φ is $E_{C_{L_{-}}^{+}}^{+}$. So $\# \varphi\left(E_{C_{L}}\right)=2^{b}$. Now $G(L / \mathbb{Q})$ naturally acts on $\varphi\left(E_{C_{L}}\right)$, that is, $\varphi(\eta)^{\tau}=$ $\varphi\left(\eta^{\tau}\right)$ for any $\eta \in E_{C_{L}}$ and $\tau \in G(L / \boldsymbol{Q})$. Therefore $\left(a_{0}, a_{1}, \ldots, a_{t-1}\right)^{\sigma}=$ $\left(a_{1}, a_{2}, \ldots, a_{l-1}, a_{0}\right)$ for any ($\left.a_{0}, a_{1}, \ldots, a_{l-1}\right) \in \varphi\left(E_{C_{L}}\right)$. It easily follows that the orbit of every element of $\varphi\left(E_{C_{L}}\right)$ except $(1,1, \ldots, 1)$ and $(-1,-1, \ldots$, $-1)$ has l elements. Hence $2^{b} \equiv 2(\bmod l)$. Thus we obtain $b \equiv 1(\bmod f)$. Since f is a divisor of $l-1$, we have the desired congruence.

Proof of Lemma 2. We shall show that $h_{K}^{*} \equiv \operatorname{det} M_{K_{0}}(\bmod 2)$. First we deal with the case $K=\boldsymbol{Q}(\zeta)$. Let θ be a primitive $(p-1)$ th root of unity. It is well known that

$$
h_{K}^{*}=\frac{1}{(2 p)^{\mu-1}}\left|F(\theta) F\left(\theta^{3}\right) \cdots F\left(\theta^{p-2}\right)\right|
$$

where F denotes the polynomial $F(X)=\sum_{j=0}^{p-2} g_{j} X^{j}$ (cf. [1] p.358). Since $\theta^{\mu}=-1$, we have $F\left(\theta^{k}\right)=\sum_{j=0}^{\mu-1}\left(g_{j}-g_{\mu+j}\right) \theta^{k j}$ for odd k. Noting that $\left(1-\theta^{-k}\right) F\left(\theta^{k}\right)=2 \sum_{j=0}^{\mu-1}\left(g_{j}-g_{j+1}\right) \theta^{k j}$ for odd k and that $\Pi_{j=0}^{\mu-1}\left(1-\theta^{-2 j-1}\right)$ $=2$, we obtain

$$
p^{\mu-1} h_{K}^{*}=\left|G(\theta) G\left(\theta^{3}\right) \cdots G\left(\theta^{p-2}\right)\right|,
$$

where $G(X)=\sum_{j=0}^{\mu-1}\left(g_{j}-g_{j+1}\right) X^{j}$. We set $b_{j}=g_{j}-g_{j+1}$. Then $b_{\mu+j}=-b_{j}$. Therefore it follows from a well known calculation that

$$
G(\theta) G\left(\theta^{3}\right) \cdots G\left(\theta^{p-2}\right)= \pm \operatorname{det}\left(b_{i+j}\right)_{0 \leq i, j \leq \mu-1}
$$

On the other hand we have

$$
2 b_{j}=b_{j+s} \pm p c_{j}
$$

where s denotes the integer such that $g_{s}=2$ (cf. Kummer [3]). So $c_{j} \equiv b_{j+s}$ $(\bmod 2)$. Therefore we obtain $\operatorname{det}\left(b_{i+j}\right) \equiv \operatorname{det}\left(b_{i+j+s}\right) \equiv \operatorname{det}\left(c_{i+j}\right)(\bmod 2)$. Thus we get the desired congruence in the case $K=\boldsymbol{Q}(\zeta)$.

In the case $K \neq \boldsymbol{Q}(\zeta)$, using a similar argument as above, we get the congruence.

Proof of Lemma 3. We may assume that L / F is an extension of degree 2. We define d_{i}^{\prime} for F just as d_{i} were defined for L. Putting [$L: \boldsymbol{Q}$] $=2 n$ and $\mu=2 n t$, we have

$$
d_{i}^{\prime} \equiv \sum_{j=0}^{2 t-1} c_{i+n j} \quad(\bmod 2)
$$

Therefore $d_{i}^{\prime} \equiv d_{i}+d_{i+n}(\bmod 2)$. Here we put two matrices A and B of degree n as follows:

$$
A=\left(d_{i+j}\right)_{0 \leq i, j \leq n-1}, \quad B=\left(d_{i+j}\right)_{0 \leq i \leq n-1, n \leq j \leq 2 n-1}
$$

Then

$$
M_{L}=\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right)
$$

Hence, since $M_{F} \equiv A+B(\bmod 2)$, we obtain

$$
\operatorname{det} M_{L} \equiv\left|\begin{array}{ll}
M_{F} & B \\
M_{F} & A
\end{array}\right| \equiv\left|\begin{array}{cc}
M_{F} & B \\
0 & M_{F}
\end{array}\right|(\bmod 2) .
$$

On the other hand, by definition of ρ, we see that $\rho_{L}=0$ (resp. $\rho_{F}=0$) is equivalent to $\operatorname{det} M_{L} \equiv 1\left(\operatorname{resp}\right.$. $\left.\operatorname{det} M_{F} \equiv 1\right)(\bmod 2)$. Therefore Lemma 3 is proved.
3. Proof of Theorem. It is well known that (iii) implies (ii) and that (ii) implies (i). By Lemma 2 we see that if h_{K}^{*} is even, then $\rho_{K_{0}}>0$, so that $\rho_{L}>0$ by Lemma 3 . Since 2 is a primitive root modulo $l, \rho_{L}=0$ or $l-1$ by Lemma 1. Therefore it is shown that (i) implies (iv), so that it suffices to prove that if $\rho_{L}=l-1$, then h_{L} is even.

Suppose that $\rho_{L}=l-1$ and h_{L} is odd. Let h_{L}^{+}be the narrow class number of L. Then $h_{L}^{+} / h_{L}=\left[E_{L}^{+}: E_{L}^{2}\right]=\left[E_{C_{L}}^{+}: E_{C_{L}}^{2}\right]=2^{l-1}$, where E_{L}^{+}is the group of totally positive units of E_{L}. Let \bar{L} be the narrow Hilbert 2-class field of L. Since $G(\bar{L} / L)$ is an elementary 2 -group, \bar{L} is written in the form:

$$
\bar{L}=L\left(\sqrt{\alpha_{1}}, \sqrt{\alpha_{2}}, \ldots, \sqrt{\alpha_{l-1}}\right)
$$

where each α_{i} is an integer of L. Since $L\left(\sqrt{\alpha_{i}}\right) / L$ is unramified at all prime ideals of L, there exists an ideal \boldsymbol{a}_{i} such that $\left(\alpha_{i}\right)=\boldsymbol{a}_{i}^{2}$. Therefore $2 \nmid h_{L}$ implies that \boldsymbol{a}_{i} is principal. So we may replace α_{i} by a unit of L for each i. Moreover, noting that $h_{L}=\left[E_{L}: E_{C_{L}}\right]$ (cf. [2]), we may assume that each α_{i} is a cyclotomic unit of L. We denote by E_{1} the subgroup of $E_{C_{L}}$ generated by $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l-1}$ and by the elements of $E_{C_{L}}^{2}$. Then $E_{1} / E_{C_{L}}^{2^{L}}$ $\cap E_{C_{L}}^{+} / E_{C_{L}}^{2} \neq\{1\}$, because $\# E_{1} / E_{C_{L}}^{2}=\# E_{C_{L}}^{+} / E_{C_{L}}^{2}=2^{l-1}$ and $\# E_{C_{L}} / E_{C_{L}}^{2}$ $=2^{l}$. Thus we can find a cyclotomic unit α in $E_{1} \cap E_{C_{L}}^{+}$which is not contained in $E_{C_{L}}^{2}$. Obviously $L \neq L(\sqrt{\alpha}) \subseteq \bar{L}$. Since α is totally positive, $L(\sqrt{\alpha}) /$ L is also unramified at all infinite prime divisors of L. This implies that h_{L} is even, which is a contradiction. This completes the proof.

Numerical example. Let $l=3$. Then, among positive integers <10000, there are 70 primes $p \equiv 1(\bmod 3)$ which satisfy the condition of Theorem (cf. [4]). Next let $l=5$. Then, among positive integers <50000, we have the following 18 primes $p \equiv 1(\bmod 5)$ which satisfy the condition of Theorem: $p=941,2161,3301,3931,8831,10181,12671,13411,16831,18661$, 21391, 24421, 26141, 32371, 35851, 39821, 43151, 44531.

References

[1] Z. I. Borevich and I. R. Shafarevich: Number Theory. Academic Press (1966).
[2] H. Hasse: Über die Klassenzahl abelscher Zahlkörper. Akademie-Verlag, Berlin (1952).
[3] E. E. Kummer: Über eine Eigenschaft der Einheiten der aus den Wurzeln der Gleichung $\alpha^{\lambda}=1$ gebildeten complexen Zahlen, und über den zweiten Factor der Klassenzahl. Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, pp. 855-880 (1870). Reprinted in Collected Papers, vol. I, Springer-Verlag, Berlin, pp. 919-944 (1975).
[4] M.-N. Montouchet (M.-N. Gras): Sur le nombre de classes de sous-corps cubique cyclique de $\boldsymbol{Q}^{(p)}, \boldsymbol{p} \equiv 1 \bmod 3$. Proc. Japan Acad., 47, 585-586 (1971).
[5] K. Uchida: On a cubic cyclic field with discriminant 163^{2}. J. of Number Theory, 8, 346-349 (1976).

