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1. Discrete decomposability with respect to symmetric pairs. Let G be a
real reductive linear Lie group and the unitary dual of G. Suppose G’ is a
reductive subgroup of G. The representation zr is called G’-aclmissible
if the restriction ZrlG, splits into a discrete sum of irreducible representations
of G’ with finite multiplicity. It may well happen that the restriction :riG, con-
tains continuous spectrum (even worse, with infinite multiplicity) which is
sometimes difficult to analyse. Thus, the notion of admissibility is empha-
sized here to single out a very nice pair (re, G’) for the study of the restric-
tion :ZIG,. Here are famous examples where zr is G’-admissible.
(1.1)(a) If G’ is a maximal compact subgroup of G, then any zt G is
G’-admissible (Harish-Chandra). An explicit decompostition formula is
known as a generalized Blattter formula if zr A, (/) (attached to elliptic
orbits in the sense of orbit method; see [2], [9] Theorem 6.3.12).
(1.1)(b) A restriction formula of a holomorphic discrete series G’ is found
with respect to some reductive subgroups G’ (eg. [7], [4]). Also the restriction
of the Segal-Shale-Weil representation zr with respect to dual reductive pair
with one factor compact is intensively studied (Howe’s correspondence).

We remark that G’ is compact in the case (1.1)(a), while r G is a

highest weight module in (1.1)(b). On the other hand, in some special settings,
explicit restriction formulas have been found where zr G does not belong
to unitary highest weight modules but is G’-admissible for noncompact G’ c G,
such as (G, G’)’ (SO(4,2), SO(4,1))and r is non-holomorphic discrete
series ([5] Example 3.4.2), (G, G’)= (SO(4,3), G2(R)) and zr is in some
family of derived functor modules (Kobayashi-Uzawa, 1989 at Math. Soc.
Japan), and a recent work of Howe and Tan [3]. See also an explicit formula
of the discrete part of ZrlG, for (G, G’) (SO(3,2), SO(2,2)) and zr non-
holomorphic discrete series in [1] in the non-admissible case. In this section
we find a more general but still good framework to study the restriction

Let 0 be a Cartan involution of G. Write o for the Lie algebra of G,- to )C for its complexification, K G for the fixed point group of 0,
and 1o fo 4-Po for the corresponding Cartan decomposition. Take a fun-
damental Cartan subalgebra [9o(C Io). Then to o ffl Io is a Cartan sub-
algebra of fo. A 0-stable parabolic subalgebra q =--q(,) --[(/) + u(/)
and a Levi part L(/) c G are given by an elliptic element / /-- 1 (t)*
(see [9] Definition 5.2.1). Let Rq (j" E N) be the Zuckerman’s derived
functor from the category of metaplectic (I, (L, K))-modules to that of
(1, K)-modules. In this paper, we follow the normalization in [10] Definition
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6.20 and some terminologies such as weakly fair in [11] Definition 2.5.
Let cr be an involutive automorphism of G. If G’ is an open subgroup of

the fixed points of a, (G, G’) is called a reductive symmetric pair. Choose a
Cartan involution 0 of G so that aO Oa. Then K’ K Yl G’ is a maximal
compact subgroup of G’, We write Io+/-" {X 1o" a(X)

___
X}. Fix a

a-stable Caftan subalgebra o of f’o such that o- --t f-i fo- is a maximal
abelian subspace in fo-. Choose a positive system +(f, c) of the restricted
root system (f, t_)and a positive system A+(f, c) which is compatible

with (f, tc_.). Let q q(/) + u be a O-stable parabolic subalgebra of g
given by an element p V’-- 1 (t)*, which we can assume to be dominant
with respect to A +(f, ) without loss of generality. Define a closed cone in
v/- 1 (t)) * by

R+ <u p> "= { E nfl’n > 0).
BA (uC p,t

Theorem 1.2. In the setting as above, if R+ (u f’l p} f v 1 (t_)*--
S{0}, then (Ca) is K’-admissible for any, metaplectic unitary character Ca of

S
in the weakly fair range.. In particular, ? (Ca) is G’-admissibte.

Remark 1.3. In Proposition 4.1.3 in [6], we have established a different
type of admissibility in the case where f has a direct sum decomposition f

fl f2, G’ K1 and q q(/.t) such that/ltcn2 0.
2. Discrete series for homogeneous spaces of reduetive type. Let G be a

Lie group and G’ its closed subgroup. Then G’ naturally acts on X G/H
from the left. Given x G/H, we write the isotropy subgroup H" =- Gx

{g G" g x x} and put X’ G’/H’. As a representation theoretic
counterpart of an embedding f X’ X we consider the restriction of rep-
resentations of G with respect to G’ which arises as the pullback of function
spaces f* F(X) --*/"(X’).

If H is a reductive algebraic subgroup of a real reductive linear Lie
group G, we say the homogeneous space G/H of reductive type. An irreduci-

Lble unitary representation 7r G is called discrete series for (G/H) if 7r

can be realized as a closed invariant subspace of L(G/H). The totality, of
Ldiscrete series for (G/H) is denoted by Disc(G/H)( (). We also write

Disc(G/H) for the multiset of Disc(G/H) counted with multiplicity occur-
ring’ in LZ(G/H). Analogous notation is used for LZ-sections of G-
equivariant vector bundles over G/H associ.ated to a unitary representation
of H. On the other hand, given (Tr, V) (, we write Disc(TrlH)( ) for
the set of irreducible discrete summands of the restriction 7rlH, and

Disc(TrlH) for the corresponding multiset counted .with multiplicity.
Theorem 2.1. Suppose G is a real reductive linear group and G’, H are re-

ductive subgroups stable under 0 simultaneously. Let H’ "= H fq G’. Assume
there exists a minimal parabolic subgroup P" of G" such that
(2.1)(a) dim H + dim G’ dim G + dim (H G’),
(2.1)(b) dim H’ + dim P’ dim G’ + dim (H’ (q P’).
Then we have a bijection between multisets UDise<V/H>Disc(Trlv,)N Disc(G’/H’).
In particular, Disc(G’/H’)= 0 if and only if eitherDisc(G/H)= 0 or rclv,
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is decomposed into only continuous spectrum for any r Disc (G /H) Moreover,

if discrete series for G’/H" is multiplicity free, then the discrete part of the res-

triction of rcla, is multiplicity free for all c Disc(G/H) c (.
An abundant theory on the harmonic analysis on G/H has been de-

veloped in these fifteen years when G/H is a semisimple symmetric space,
while very little has been studied when it is non-symmetric. We note that if

one knows Disc(G/H) and the restriction formula zcla, for zc Disc(G/H),
then Theorem (2.1) gives a construction and exhaustion of discrete series for
G’/H’. More weakly, only a combination of Theorem (1.2) and Theorem

(2.1) gives new results o’n the existence of discrete series of some

non-symmetric spherical homogeneous spaces such as
Corollary 2.2 1) Disc(SU(2p 1,2q)/Sp(p- 1, q)) :/: 0 for any p, q.

2) Disc(SO(2p 1,2q)/U(p 1, q)) :/: 0 if and only ifpq 2Z.
3) Disc(SO(4, 3)/G(R)) 0, Disc(Gx(R)/SL(3, R)) :/: O.

Now, relax the assumption (2.1)(a). In the setting at the beginning 2, we

say f G’/H’ G/H regular if there exists a submanifold I of G/H such
that Gv H’ for any y I and that q G’/H" I--* G/H (g,y) g’y

is an open embedding.
Example 2.3 (group manifolds). If H’ H {e}, then G’ G is regu-

lar. We can take I to be a local section of the principal bundle G G/G’.
Example 2.4 (semisimple orbits in symmetric spaces). Let a, v be

commutative involutive automorphisms of G, (G, G’)and (G, H)the cor-
responding symmetric pairs. Fix a maximally abelian semisimple subspace a

in {Xe go’a(X) v(X) -X} and define M"- {g G’ fl H’Ad(g)X
X for X a}. Then G’/M’ G/H is regular. The regular semisimple

orbit in G under the adjoint action of G is a typical example.
Theorem 2.5. In the setting of Theorem (2.1), suppose o" G’ x H; x I---*

G/H (j J) define regular orbits such that the disjoint union of 9j(G’/H; Ij)
is open dense in G/H. Then we have (3 Disca/n)Disc(7clv’) C U jDisc(G’/Hj9.
In particular, if Disc(G’/H) 0 (j J), then either Disc(G/H) 0 or

Disc(zclv,) 0 for any r Disc(G/H). Moreover, if r Disc(G/H) is
K’-admissible, then Disc(rlv,) f Disc(G’/H5.

Here is a very special case corresponding to Example (3.2):
Corollary 2.6. Suppose r A- is a (Harish-Chandra’s) discrete

series for G. If 7c is G’-admissible, then 7c1, is decomposed into discrete series

for G’, In particular, if rankG’ > rankK’ and rankG rankK, then zcla, is

decomposed into only continuous spectrum.
Remark 2.7. In general, if zc Disc(G), then zclv, is supported on tem-

pered representations of G’ by Mackey-Anh’s reciprocity theorem.
3. Examples of deeomposition formulas. In the framework of 1, 2 we

present some explicit branching formulas joint with B.Orsted.
Let G SOo(P, q) K SO(p) SO(q) (p -> 1, q -> 0). We take a

(standard) basis {f/} of 4--1 (t)* as in [6] 2.5 and define 0-stable para-
bolic subalgebras by q+ .= q(f) + u+, q_ "= q(--f) + u_(p --> 2).
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Then L(f) L(-f) T x SOo(p 2, q). Put Q’- -(p + q) 2. For, Z + Q, we write Caz for the metaplectic representation of corres-

ponding to 2f g 1 (t)*. If 2 Z + Q and 2 >_ 0 (moreover if 2 -> gp
1 when q- 0), we define (g, K)-modules by
U+() rrs(P’q’()"= (+)P-2(C2f) U_() uS(P’q’()"= (_)o-2(C_Rf,)

Then U,(R) are non-zero irreducible (g, K)-modules and U,()
Disc(SOo(P, q)/SOo(P 1, q)) if R > 0.

Next, let G’= U(p, q) K’= U(p) U(q). We represent the root
system of ’ as (’, ’c) ( (e e) 1 g < j g p or p + 1 g i < j
g p + q}. We define 0-stable parabolic subalgebras of g’ by
I) For p 2 1, q 2 1, o(2e + e+) and [’= (-- 2e- ep+q).

For R N+, l Z such that l R +p+ q+ 1 rood 2, we define
(g’, K’)-modules by:

+

If q 2 1, then we have (cf. [6] Theorem2):
(3.1)(a) V+(R, l), Vo(, l), V_(, l) are non-zero and irreducible (’, K’)-

modules with Z(g’)-infinitesimal character

Q’) in the Harish-Chandra parametrization where Q"=
p + q 3

2

(3.1)(c) Disc(U(p, q)/U(1) x U(p- 1, q) Z)(q 2 1, are given by,
(V(R, l).lll >R > o} u (Vo(2, I).R 2 [l[} (p 2, lo, - sgnl),

a > o) (p 2, o),

Here, Z is a character of U(1) and R runs over R 2Z + + p + q + 1
(resp. R 2Z + + q).

Third, let G"= Sp(p, q) K"-Sp(p) Sp(q), and represent the
root system of f" as A(f", ") {(h-- h), 2ht’l g i<jgp or
p+ 1 g i<jp+q, lg lgp+q}.Wedefine
I) Forp > 1 q> 1 ’-- o(2h+ h+) L" T
) For p 2 2, q 2 0, q’ "= q(2h + ha), L T x Sp(p 2, q).

For R N+,j N such that j R + 1 mod 2 we define (g", K")-
modules by:

,,+ (Ca++h+ h+) ifj + 1 > R, pq > 1,

If q 1, then we have (cf. [6] Theorem 1)"
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(3.2)(a) W+(2, j), Wo( j) are non-zero and irreducible (g", K")-modules
2 +j+ 1 --2 +j+ 1

with Z(g")-infinitesimal character 2 2 Q’’ Q" 1,

...,1) in the Harish-Chandra parametrization, where Q" p + q 2.

(3.2)(b) Disc(Sp(p, q)/Sp(1) x Sp(p 1, q);a)(q _> 1 and j N) are given by,

{Wo(,j)>j} (w+(,j).j>>o} (p>2),
{W+ (,, j)’j- 2q + 1 _> > 0} (p 1, j 2 2q),
0 (p= 1, j < 2q).

Here, a is the irreducible j + 1 dimensional representation of Sp(1). In
(3.2)(b), , runs over , 2Z + j + 1 and the multiplicity of discrete series
is uniformly j + 1 or 0.

We write Wk(RP) for spherical harmonics on Sp-1
of degree k(k N),

( 1 )which is isomorphic to uS+( k +-ffp- 1 if p--> 3 or (p, k) (2,0), to

uS+( (k) @ gs()_ (k) if p 2 and k -> 1. If p- 1, we put k(R1) "= C
for k 0, 1 and := 0 for k-> 2. Next, we write spherical harmonics of

oCr,Bdegree (a, fl)(a fl lV) as (C) V0v(p)(a+fl+p- 1, a-fl) c
ag+e (Ra) (p >_. 2). In the case p 1, it is non-zero only if a/3 0. Finally,
we write Fs(>(x, y) (x -> y > 0) for the irreducible representation of
Sp(p) with an extremal weight xf + yf. In the case p 1, it is non-zero
only if y-- 0.

Theorem a.a (SOo(P, q) * SOo (P, s) x SO(q s) ). Let p >_ 2, s _> 1,
1

q-- s>_ 1,2 Z+-(p+ q),2 >0.

uSOo(,) ( ) a+ (2) [SOo(l),s)xSO(q_s)
rrs(’s 2 + i
.+ - (q s) + a + 2k N (R’-s)

a,kN

Theorem 3.4 (U(p, q) U(p, s) U(q- s)). Let s >-- 1, q- s --> 1,, N+, 2Z + , + p + q + 1. For convenience, we define an irreducible
representation of U(p, s) U(q s) by

V(a, fl, k ;/2,/) "= V(’)(2 + q s + a + fl + 2k, l ce +/3) N ,e(cq-s).
1)(i) Suppose p > 2, > ,a + q- s.

V+v(p’q (/2, l)Iu(.sg(q-s - @ V+ (a,/3, k 2, l)
ot,B,k N

ot+k <1/2( l-, -q+s)

Vo(a, fl, k;,, l).
a,B,kY

ot+ k > 1/2( l-2-q+s)

(ii) Suppose p >- 2. We put 6= + if/2 + q-- s >-- l> /2 and 6 0 if
/2 >_ l >-- /2 in the left side.

V<’)(a, l)l<,<-> - 3 /o(C, fl, k;a, l).
a,B,kS

Use the duality (3.1)(b) if 2 > l>_ /2-- q + s or-- , q+ s > l.
2) Supposep 1, >- 2 + q. (Use the duality (3.1)(b) if-- >-- , + q.)

a,B,kN

a+k1/2(l-2-q)
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Theorem 3.5 (Sp(p, q) Sp(p, s) Sp(q- s)). Let s >_ l, q-- s >_ l,
N+, j N, j 2Z +/ W 1. For convenience, we define an irreducible

representation of Sp(p, s) Sp(q s) by 4/(y, v, k, t 2, j) "=

W[(’) ( + 2q- 2s + 2y + 2k + t + v, j + v t) Fsp(q-s) (y + t + v, y).
Wsp(p’q) ( j)1)(i) Suose p 2, j + 1 > 2 + 2q- 2s. Then, ,,+ s,(,,s)s,(q-s)

+(y, v, k, t;2,j) o(Y, v, k, t;,j).
y,v,k,tN y,v,k,tN
Ogtgj Ogtgj

+ +t<(+-)-q+s + +t(+-)-q+s
(ii) Suppose p >- 2. We put 6= + if 2 + 2q-- 2s >-j + 1 > and

6= O ifp >-- 2, / >--j+ 1 in the left side.

Wp(p’q) (’ J)fSP(P,$)SP(q-s) - /o(y, v, k, t , j).
y,v,k,tN
O<_tj

2) Supposep= 1, j_>2 +2q-- 1.

WS+ p(p’q) (, J)ISp(1,s)Sp(q-s)
y,v,k,tN

y+k+t<_1/2(J+l-)-q
A detailed proof is to appear elsewhere.

/+(y, v, k, t ;/, j).
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