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57. On a Conjecture on Pythagorean Numbers

By Kei TAKAKUWA and You ASAEDA

Department of Mathematics, Gakushuin University

(Communicated by Shokiehi IYANAGA, M. J. A., Sept. 13, 1993)

L. Jemanowicz [1] conjectured that if u, v, w are Pythagorean numbers,
i.e. positive integers with (u, v) (v, w) (w, u) 1 satisfying u -+- v

w, then the diophantine equation on 1, m, n N
u+v -w

has the only solution (1, m, n)= (2,2,2). (Cf. [2].) Since u, v, w are
Pythagorean numbers, we have

u=x --y, v=2xy, w=x +y,
where x, y N, with (x, y) 1, x > y, x y (mod 2).

We shall consider here the following diophantine equation on l, m, n N
(1) (4a .) m--y + (4ay) (4a2+
where a, y N with (a, y) 1, 2a > y, y --= 3 (mod 4), whence l is even,
which is easily een considering (1) rood 4.

Proposition 1. If a is odd, then m n (mod 2) and m =/= 1 <= n is even.

Proof. From (1) we have (4ay) m-- (2y2) n(mod4a2- y2). By the
assumptions on a, y,

( 22ay)4a ( 2yn )y. (_ 1)= (_ 1) ,
4a2 y

where (:----)is the Jacobi symbol. Hence m ----n (mod 2). If n is even, m 1.

If n is odd, (4a+ y)-= 5 (roodS) and (4a2- y)---- i (roodS). Then
we have (4ay) 4 (rood 8) from (1), hence m 1.

Proposition 2. If a is even, then m is even.

Proof From (1) we have (4ay) ----(2//2 (mod4a y By the
assumptions on a, y,

(2=a__Y__)_ (_ 1)= ( 2Y" 1.
4a y2 4a

Hence m is even.
Proposition 3. If a is even and y ------ 3 (mod 8), then n is even.

Proof By Prop. 2, m is even. From (1) we have 1 ------ 9 (mod 16) Hence
n is even.

Theorem 1. Let a be odd, y----p odd prime, and p------ 3 (mod4) in(l). If
m =/= 1, then (l, m, n) (2,2,2).

Proof. By Prop.l, n is even. Put 21’, n 2n’, and (4a2+p2)’-+-
(4a p2)v A, (4a -+- p2)n, (4a p2)v B. Clearly (A, B) 2.
From (1) we have
(2) 2ap AB
Assume A 0 (modp), then we have (2a)2"’-F (2a) 2v 0 (modp), so
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(2a) a’"’-’

dicts the assumption p 3 (mod 4). Therefore B 0 (mod p).
Now there are two possibilities on choice of A, B in (2):

(2.1) A 2bm, B 2"-lCmpm

(2.2) A= 2m-lb, B- 2c p

1 (modp). Then (2a)I,’-’1 has order 4 modp. This contra-

xy zw.
But positive integers x, y, z, w satisfying (3) do not exist by the Lemma

where a be, (b, c) 1.
Case (2.1). B 1 (- 1) ’ 0 (mod 4), hence l’ is even. B

(-- 2p2) ’ 2m-cmp
(-- 2p)’" 2m-cmpm

which is a contradiction. Thus (2.1) does not occur.
Cse (2.2). A 1 + (-- 1) ’ 0 (mod 4), hence l’ is odd..4 ------ 5"’-t-

’= 0 (mod 8). As l’ is odd, n’ is odd. A --= (2p) "’ ------ 2cmpm (mod 4a
p2). By the assumptions on a,

(2p) -’ 2cmpm

Therefore m is even. Assume m --> 4. (A + B)/2 (4a + p)’ 2m-bm
+ cpm. Then 5"’ ------ 1 (mod 8) as c, p are odd. Since n’ is odd, 4 ------ 0 (mod 8),
which is a contradiction, hence

8b _< 8a= (4a +p) + (4a- p). Therefore ’= l’-- 1. Thus
(l, m, ) (2,2,2).

Theorem 2. Let a be even, y p odd prime, and p 3 (mod8) in (1). If
2a + p is prime and 2a p is prime or 1, then (l, m, n) (2,2,2).

Proof By Props. 2, 3, both m and n are even. Now let l’, n’, A and B
be as the proof of Theorem 1, then (A, B) 2 and B 0 (modp). Let a

2Sao (s >-- 1), (2, a0) 1, then there are two possibilities on choice of A, B
in (2)"
(2.3) A 2bm, B 2’(+s)-cp,mm

(2.4) A- 2m(+s)-’bm, B- 2Cmpm,
where a0 bc, (b, c) 1.

Case (2.3). B-= 1 (- 1) ’-- 0 (mod 4), hence l’ is even, then (4a
--p)’ --= l(mod16). Therefore B= 9"’-- 1=0(mod16), hence n’ is
even. Let l’ 2l", n’ 2n m 2m’.

(A + B)/2 = ((4a + p)"") (bin’) + (2m’+s)-Cm’pm’) .
Then we have bm’-- 2 2 m’(2+s)-i m’ m’x y,2 c. p =2xy, (4a X -+-
y,wherex, y N, with (x, y) 1, x> y, x y(mod2).

(A- B)/2 ((4a- p)V,)= (bm’)_ (2m’(+)-Cm’p’)"
Then we have bm" z + c 2zw (4a p) l,.

w ,where z, w N, with (z, w) 1, z > w, z w (mod 2). Accordingly,

(3) x y z + w
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which we prove later. Thus (2.3) does not occur.
Case (2.4). A =- 1 + (- 1) t’ 0 (mod 4), hence l’ is odd. (A- B)/2

(4a p) ’ (2m,(+s)-bm,) (cm’pm") . So
(4)(2a + p)r(2a P)t’ (2m’(z+s)-bm" + Cm’pm’) (2m’(+s>-lbm" Cm’pm’).
Since 2a+p is prime, 2a--p is prime, or 1, and (2a+p, 2a--p)
(2m’(2+s)-lbm’.+_ cm’pm" 2m’(2+s)-lbm" m’pm"--c )--1, we have either of two
cases:
(4.11 2m’(2+s)-lbm" + Cm’pm" (4a p2)

2m’(2+s)-lbm" m’pm"
(4.2) 2m’(2+s)-lbm" + Cm’pm" (2a + p)’,

2m’(2+s-bm" m’pm"c (2a-- p)
C.se (4.1). 2c)’ (4a p)r_ 1 7’- 1

is odd. Hence c (mod 8) Then 1 2’(+s-b"
2’(+s-b’-- (mod 8), that is, 2’(+s-b" 4(mod 8). As b is odd and
m’(2 + s) 1 2 2, m’(2 + S) 1 2, i.e. m 1, s 1. Then (4.1) be-
comes

4b+cp= (2a+p)r(2a-p)r,
4b-cp=l.

Then 8b- 1 (2a +p)’(2a- p)’. This is possible only when 2a--p 1.
Thus (4.1) occurs only in the case 2a --p 1 which is a subcase of (4.2).

Case (4.2). (2a + p)r_ (2a- p)t’= 2Cm’pm’, and l’ is odd, then
2pr= 0 (modc). As (p, c) (2, c) 1, c-- 1. Accordingly b-ao, and
(4.2) becomes

2m’
(.+s)-I m" pm" rao + (2a+p)

2
m’(2+s)-I m’ pm’ l’ao (2a p)

Then 2
m’(2+s) m" l" l" l’ao (2a+p) + (2a--p) Since is odd, (2a+p)r +

2+s(2a p) ’ 4ad z aoa, where d (2a + p)l’-I (2a + p)r-2(2a p)
+ + (2a- p)’- is odd. Hence m’= 1. By (4.2) 2a + p (2a +
hence 1’ 1, then n’ 1. Thus (l, m, n) (2,2,2).

Lemma. Let x, y, z, w N, (x, y) (z, w) 1, x > y, z > w, x
y (mod 2), z w (mod 2). Then one of the following equations is not sa-

tisfied.
(3) x2_ y2= z + w

xy ZW.

Proof. Suppose that x, y, z, w satisfy (3). As z w (mod 2), z + w
21 (mod 4), that is, x --y --= 1 (mod 4), hence x is odd and y is even.

Let (x, z) a. Put x ab, z ac, so (b, c) 1. By xy zw, we can put
y cd, w bd. As y is even, we can assume that c is even. (The proof is

a2 bessentially the same for d being even.) By x --y z + w2, ( c2)
d2(b + c2). (x, y) 1 and (b, c) 1 mean (a, d) 1 and (b2- c +
2) b d c b2.c 1. Hence + c a, + As ciseven, wehave

b x ’2 c= 2x’y’, a x’2+
w c= 2z’w’, b z" + w
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where x,y’, z’, w’, N, with (x,y’) (z’, w’) 1, x’>y’,z’> w,
x’ y’ (mod 2), z’ w’ (mod 2). Therefore

X2 Y2 Z2 "t-" W2

x’y’ Z’W’.
Hence x’, y’, z’, w’ satisfy (3). And x>_ a >x, y_> c > y, z_> c_> z,
w 2 b > w’. This means that x, y, z, w N satisfying (3) become infinitely
small, which is a contradiction.

Theorem 3. Let a be odd, y p odd prime, and p 3 (mod4) in(l). If
a prime divisor q of a satisfies q 1 (mod 4) and

then (1, m, n) (2,2,2).
Proof Let r be a primitive root modulo q. Then r has order q 1 mod

q. Let p r (mod q). Since

1

t is odd. Then order ofp modq= order of r mod q- (q-- 1)/(t, q--
p21/-l1) 0(mod4). From (1) ( p) p"(modq), so l(modq).

Hence order of p mod q divides 2(/- n). So 2 divides l- n. Since l is even,
n is even. By Prop.l, m 1. Thus (l, m, n) (2,2,2) from Theorem 1.

Remark. Thus we could prove that the conjecture of Jemanowicz
holds in special cases as shown in Theorems 1-3. We could prove also that
this conjecture holds in case y- 3, a is odd and (i) a 0,2,3,4 (mod 7),
a 4,5 (mod 9), a 4 (mod 11), a 0,10 (mod 13), or a 6,7,11 (mod
17), or (ii) a prime divisor q of a satisfies q 1 (mod 3), and the order of.3
mod q is divisible by 3. (For all primes q 1 (mod 3), 7 q 199 except
61,67,103,151,193, the order of 3 mod q is divisible by 3.) But we omit
here the detailed proof which runs in a similar way as in our proof of
Theorems 1, 3 respectively.
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