53. On the Order of Strongly Starlikeness of Strongly Convex Functions

By Mamoru NUNOKAWA

Department of Mathematics, University of Gunma (Communicated by Heisuke HIRONAKA, M. J. A., Sept. 13, 1993)

1. Introduction. Let A denote the set of functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ that are analytic in $E = \{z : |z| < 1\}$. A function $f(z) \in A$ is called strongly starlike of order β , $0 < \beta \leq 1$, if $|\arg(zf'(z)/f(z))| < \pi\beta/2$ in E.

Let us denote $STS(\beta)$ the class of all functions which satisfy the above conditions. On the other hand, a function $f(z) \in A$ is called strongly convex of order β , $0 < \beta \leq 1$, if $|\arg(1 + zf''(z)/f'(z))| < \pi\beta/2$ in *E*.

Let us denote $STC(\beta)$ the class of all functions which satisfy the above conditions.

Mocanu [1, Corollary 1] obtained the following result.

If $f(z) \in A$ and

$$\left| \arg \left(1 + \frac{zf''(z)}{f'(z)} \right) \right| < \frac{\pi\gamma}{2}$$
 in E ,

then

$$\left| \arg \frac{zf'(z)}{f(z)} \right| < \frac{\pi\beta}{2}$$

where

$$\operatorname{Tan} \frac{\pi\gamma}{2} = \operatorname{Tan} \frac{\pi\beta}{2} + \frac{\beta}{(1-\beta)\cos\frac{\pi\beta}{2}} \left(\frac{1-\beta}{1+\beta}\right)^{\frac{1+\beta}{2}}$$

and $0 < \beta < 1$.

In this paper, we will prove the following theorem.

Main theorem. Let $f(z) \in STC(\alpha(\beta))$. Then we have $f(z) \in STS(\beta)$, where

$$\alpha(\beta) = \beta + \frac{2}{\pi} \operatorname{Tan}^{-1} \frac{\beta q(\beta) \sin \frac{\pi}{2} (1 - \beta)}{p(\beta) + \beta q(\beta) \cos \frac{\pi}{2} (1 - \beta)}$$
$$p(\beta) = (1 + \beta)^{\frac{1+\beta}{2}} \text{ and } q(\beta) = (1 - \beta)^{\frac{\beta-1}{2}}.$$

2. Preliminaries. To prove the main theorem, we need the following lemma.

Lemma. Let p(z) be analytic in E, p(0) = 1, $p(z) \neq 0$ in E and suppose that there exists a point $z_0 \in E$ such that

$$|\arg p(z)| < \frac{\pi \alpha}{2}$$
 for $|z| < |z_0|$

and

$$|\arg p(z_0)| = \frac{\pi \alpha}{2}$$

where $0 < \alpha$. Then we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = ik\alpha$$

where

$$k \ge \frac{1}{2}\left(a + \frac{1}{a}\right)$$
 when $\arg p(z_0) = \frac{\pi \alpha}{2}$

and

$$k \leq -\frac{1}{2}\left(a+\frac{1}{a}\right)$$
 when $\arg p(z_0) = -\frac{\pi \alpha}{2}$

where

$$p(z_0)^{1/\alpha} = \pm ia$$
, and $a > 0$.

Proof. Let us put

$$q(z) = p(z)^{1/\alpha}.$$

Then we have

$$\operatorname{Re} q(z) > 0 \text{ for } |z| < |z_0|$$

and

$$\operatorname{Re} q(z_0) = 0$$

Let us put $q(z_0) = \pm ia$, a > 0 and applying Nunokawa's result [2], we have

$$\frac{z_0 q'(z_0)}{q(z_0)} = \frac{1}{\alpha} \frac{z_0 p'(z_0) p(z_0)^{\frac{1}{\alpha} - 1}}{p(z_0)^{1/\alpha}} = \frac{1}{\alpha} \frac{z_0 p'(z_0)}{p(z_0)} = ik$$

where k is a real and

$$k \ge \frac{1}{2}\left(a + \frac{1}{a}\right)$$
 for $q(z_0) = ia$

and

$$k \leq -\frac{1}{2}\left(a+\frac{1}{a}\right)$$
 for $q(z_0) = -ia$.

3. Proof of the main theorem. Let us put p(z) = zf'(z)/f(z) and $f(z) \in STC(\alpha(\beta))$.

If there exists a point $z_0 \in E$ such that

$$|\arg p(z)| < rac{\pi eta}{2} \quad ext{for} |z| < |z_0|$$

and

$$|\arg p(z_0)| = \frac{\pi\beta}{2}, \quad (0 < \beta < 1).$$

Putting

$$q(z) = p(z)^{1/\beta},$$

then we have

Re
$$q(z) > 0$$
 for $|z| < |z_0|$,

Re
$$q(z_0) = 0$$
 and $q(z_0) = \pm ia$

where a is a positive real number.

Then, from the lemma, we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = i\beta k$$

$$k \ge \frac{1}{2}\left(a + \frac{1}{a}\right)$$
 when $q(z_0) = ia$

and

$$k \leq -rac{1}{2}\left(a+rac{1}{a}
ight)$$
 when $q(z_0) = -ia$

where $q(z_0) = p(z_0)^{1/\beta} = \pm ia$ and a is a positive real number. At first, let us suppose $q(z_0) = ia$, a > 0, then we have

$$1 + \frac{z_0 f''(z_0)}{f'(z_0)} = p(z_0) + \frac{z_0 p'(z_0)}{p(z_0)}$$
$$= p(z_0) \left(1 + \frac{z_0 p'(z_0)}{p(z_0)^2} \right) = (ia)^{\beta} \left(1 + i\beta k \frac{1}{(ia)^{\beta}} \right)$$
$$= a^{\beta} e^{i\frac{\pi\beta}{2}} \left\{ 1 + e^{i\frac{\pi}{2}(1-\beta)} \beta k \frac{1}{a^{\beta}} \right\}$$

where $k \ge \frac{1}{2}\left(a + \frac{1}{a}\right)$.

Then we have

$$\beta k \frac{1}{a^{\beta}} \geq \frac{\beta}{2} \left(a^{1-\beta} + a^{-1-\beta} \right).$$

Let us put

$$g(a) = \frac{1}{2} (a^{1-\beta} + a^{-1-\beta}) \text{ and } a > 0.$$

Then, by easy calculation, we have

$$g'(a) = \frac{1}{2} \{ (1 - \beta) a^{-\beta} - (1 + \beta) a^{-2-\beta} \},\$$

and g(a) takes the minimum value at $a = \sqrt{(1 + \beta)/(1 - \beta)}$. Therefore, we have

$$\arg\left(1 + \frac{z_0 f''(z_0)}{f'(z_0)}\right) = \arg p(z_0) + \arg\left(1 + \frac{z_0 p'(z_0)}{p(z_0)^2}\right)$$
$$= \frac{\pi\beta}{2} + \arg\left(1 + e^{i\frac{\pi}{2}(1-\beta)}\frac{\beta k}{a^{\beta}}\right)$$
$$\geq \frac{\pi\beta}{2} + \operatorname{Tan}^{-1} \frac{\left(\frac{\beta}{1-\beta}\right) \left(\frac{1-\beta}{1+\beta}\right)^{\frac{1+\beta}{2}} \sin\frac{\pi}{2}(1-\beta)}{1 + \left(\frac{\beta}{1-\beta}\right) \left(\frac{1-\beta}{1+\beta}\right)^{\frac{1+\beta}{2}} \cos\frac{\pi}{2}(1-\beta)}$$
$$= \frac{\pi\beta}{2} + \operatorname{Tan}^{-1} \frac{\beta q(\beta) \sin\frac{\pi}{2}(1-\beta)}{p(\beta) + \beta q(\beta) \cos\frac{\pi}{2}(1-\beta)}.$$

This contradicts the assumption of the main theorem.

For the case $q(z_0) = -ia$, a > 0, applying the same method as the above, we have

No. 7]

$$\arg\left(1+\frac{z_0 f''(z_0)}{f'(z_0)}\right) \leq -\frac{\pi\beta}{2} - \operatorname{Tan}^{-1}\frac{\beta q(\beta) \sin\frac{\pi}{2} (1-\beta)}{p(\beta) + \beta q(\beta) \cos\frac{\pi}{2} (1-\beta)}.$$

This contradicts the assumption. Therefore we complete the proof. Putting $\beta = 0.5$ in the main theorem, we have the following result: If $f(z) \in STC(\alpha(0.5))$, then we have

$$\left| \arg \frac{zf'(z)}{f(z)} \right| < \frac{\pi}{4}$$
 in E

where

$$\alpha(0.5) = 0.5 + \frac{2}{\pi} \operatorname{Tan}^{-1} \frac{1}{108^{1/4} + 1}$$

\Rightarrow 0.648.

References

- P. T. Mocanu: Alpha-convex integral operator and strongly starlike functions. Studia Univ. Babes-Bolyai Mathematica, 34, 2, 18-24 (1989).
- [2] M. Nunokawa: On properties of non-Carathéodory functions. Proc. Japan Acad., 68A, 152-153 (1992).