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and its Applications*)

By Toshiyuki SUGAWA
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0. Introduction. As is well-known, the hyperbolic-sup norm (or the
Nehari norm) of the Schwarzian derivative of a meromorphic function is
closely related to its (global or local) univalence. The famous Nehari-Kraus
theorem and Ahlfors-Weill theorem are of fundamental importance in this
direction of research.

In this note, in order to clarify this relationship more, we shall intro-
duce, in section 2, a class of "local" norms on the space of Schwarzians.
These norms are expected to be near the hyperbolic-sup norm, and deter-
mined by the local shape of the domain. But, whereas the pullback by a con-
formal map is an isometry with the hyperbolic-sup norm, it is only a
quasi-isometry with these local norms. In section 3, we shall describe how
the magnitude of norms of Schwarzian is controled by the local quasiconfor-
mal(-- qc) extensibility, which the author has learned from [1]. An essential
use of the result in this section will be made in the article [5] of the author.
Finally, in section 4, we shall mention an estimate of the local norms of
Schwarzian by the injectivity radius.

1. Preliminaries. Throughout this note, let D be a plane domain of
hyperbolic type (i.e., C\D contains at least two points) and pD(Z)[dz[be
the hyperbolic metric with constant negative curvature 4. For a holomor-
phic function.0 on D, we define the hyperbolic-sup norm of by q lID--
supzD PD(Z)-e[P(Z)[ and we denote by Be(D) the space of all holomorphic
functions in D with a finite norm, which becomes a complex Banach space.
For a non-constant meromorphic function f on D, the Schwarzian derivative

of f is defined by the formula S (f"/f’)" _(f,,/fl ,)e, which is

holomorphic at Zo D if and only if f is locally univalent at Zo.
In this note, f )---* shall be called a k-qc map of 7 where k is a con-

stant and 0 -< k < 1, if f is an orientation-preserving self-homeomorphism of
the Riemann sphere 7 with locally L2-derivatives such that 0-f[ <--klO,f[
a.e. It should be alerted that this terminology is not standard. In fact, k-qc

l+k
map is ordinarily called "K-qc" where K 1 k" As a general reference

for qc maps and the hyperbolic sup-norm of the Schwarzian derivatives, we
refer to [4].

*) Dedicated to Professor Nobuyuki Suita on his sixtieth birthday.



212 T. SUGAWA [Vol. 69(A),

The following theorem is fundamental for our present aim (e.g. see [4]
pp. 60, 72 and 87). The first assertion and the last one are known as the
Nehari-Kraus theorem and the Ahlfors-Weill theorem, respectively.

Theorem 1.1. If a meromorphic function on the disk A is univalent, then

s II < 6, Moreover iff is extended to a k-qc map of , then s I1 < 6k.
Conversely, each meromorphic function f on a disk ZI with SI Ila <-2 is

1
univalent, and if SI II < 2, then f can be extended to a- s II-qc .cap of .

{}2. A class of norms. Now we define certain norms which are deter-
mined by only local deta of the domain. The same ideas here were appeared
in some earlier works in this area, not necessarily in explicit forms.

Let 1 _< A <: oo be a constant, D be a plane domain and define

a(D) {B(z0, r) r > O, B(zo, Ar) D}, where B(zo, r) {z C;
z z0] < r}. For a holomorphic function q, we define

II(,A A sup I1
AA(D)

and
q ][(> sup 0 (z)] dist (z, D)

The reason for the above notation ][" [l() will be explained in Remark lof
Theorem 2.1.

The hyperbolic-sup norm have a monotonicity property that
--< P liD,. if D c D2, which is a conclusion of the $chwarz-Pick lemma. For
the above defined norms this property trivially holds, that is, if D1
then I1’ -< I1’ ,o 1 _< A <_

The following theorem gives a basic estimate for our norms.
Theorem 2.1.

Proof Let 1 <-- A <- A,. < oo d B(zo, r) a,.(D), and set A

A,/A1, ZI’ B (Zo, Ar) ( a, (D)). Since Pa (z) 2, PA’ (Z)

Ar
we have Pa,(z)/Pa(z) <_ 1/A for all z A. Thus P ]laA’r"- z- Zo

sup <z)-’ <z) _< A-’ sup , <z)-’ <z)

_
A- II,, and this implies

A.211 (P Ila g A P I[a,. Therefore (b) follows if A < oo. In the case that A
< Aa , for arbitrary zo D let 6 dist(zo, OD), r 6/A and A

1 AB(zo, r) ( a(D)). Then Pa(z0) =7= 6 so we have ](Zo)[ =A
(Ap<Zo)-l <Zo) < A12 II < , and thus we now get part (b) for A = .

Once (b) obtained, it suffices to prove (a) in the case A 1, in which
case (a) naturally follows from the monotonicity of the hyperbolic-sup norm.
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Finally we show the statement (c). Let 0(z) dist(z, 6D) for z D
and A B(zo, r) a(D). Then (c) is directly deduced from the following

A + v/A-- I
lower estimate 6(z)p(z) _>

2 (’Z A). Without loss of

generality, we can assume that zo O. Since 5(z) 5(0)- z rA--
r(rA z [)

it follows that 6(z)p(z) and an elementary calculation

shows that
A+A-- I

(.)
r(rA-- zl)

2r

for 0 zl < r, where equality holds for zl r

A +(A- I
Remark 1. From (b)and (c)it follows that

I1 thus lim 112 I1’ which is a reasonA+]A_ I
why we use the notation 1"

in (c) is best ossible. WeRemark . The constant A 1
shall explain this fact for A > 1. Let D U- B(O,1), 1/A,

and a Note that A (D) and a A. Next, we choose a
/

sufficiently large integer and a positive real number t0, )such that-- 2a= +2 Put p,,(z) (z+)", then IP,,I sup< (1--

z + 1 (1 a)(a + )". On,he other hand, from the equality in (*),
we have , 1 o(a)- a + 1 (2 / (N + N 1))11 , ’(’v, hence,

A A + ]A 1
The opposite inequality is already obtained in Theorem 2.1 (c), and hence we
conclude that equality holds in the above.

From the above theorem, it turns out that norms are equivalent
to each other (1 A ), so we have a complex Banach space (D)
{" holomorphic function on D and II> < }, which is independent of
the special choice of A.

By Theorem 2.1 (a), we obtain that Bz(D) z(D), but unfortunately,
these two spaces does not coinside generally. The following theorem gives a
geometric criterion for the coincidence of the two spaces. (The implication
(i) (ii) is a conclusion from the Banach open mapping theorem.)

Theorem 2.2 (Beardon-Pommerenke [2]). The followings are equivalent to
each other.

B (D) (D),
(ii) There exists a constant c > 0 such that II, c

B(D),
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(iii) sup(mod A A is an annulus in D which separates the boundary of
D} oo where mod A log R

logr ifA- {z;r z-zo[ R}.
On the other hand, for simply connected domains, the Koebe one-quarter

theorem yields the following
Theorem 2.3 (cf. [2]). If D is a simply connected domain of the hyperbolic

type, then
<- 16 II;

Thus, for simply connected plane domains all the above norms are
equivalent. We conclude this section with an exposition of the quasi-
isometricity of the pullback by conformal maps with respect to these norms.

Suppose that F maps a domain D conformally into C. For
B(F(D)) let F*q denote the pullback of p by F as a holomorphic quadratic
differential, that is, F*cp- p F. (F). This pullback is an isometry with
the hyperbolic-sup norm, that is, F*o I[u o Ily(u). While, with the local
norms, the pullback is only a quasi-isometry.

Proposition 2.4. Suppose that F maps a hyperbolic plane domain D confor-
mally into C. Then IIF* () -< Moreover if F is a MObius

transformation, then we have a better estimate" [IF*q IIDC4) ( 2

A + A- \ 1 + A- /

I(A’)q ,(D) where A >_ 1, A’= 2

Proof. The first assertion directly follows from the inequality:
1

dist(F(z), OF(D)) >_-l F’(z) dist(z, OD), which is an easy consequence

from the Koebe one-quarter theorem. Next suppose that F is a MObius map.
Let A B(zo, r) A(D) and set z B(zo, Ar). We now assert that
F(A) A,(F(D)). We may assume that F(Z)
z+a 1

where 0 <-- a < 1. Since the center of F(A) is c=-(F(A-1) +1 + ag
1F(--A-l)) and the radius is r=- (F(A-) --F(-A-)), and therefore

1--c
>_A’, it follows that F(A) -c(U) c A,(F(D)) By the above

assertion, we obtain an inequality IIF*
which proves the second assertion.

()Remark 1. In particular, F*(p [I(D1) (P ,,y()if F is a MObius map.
Remark 2. Let A-> 1 and suppose that F" D --- C is a holomorphic

map which excludes at least two points and 2. Then, by the
F’(z)

similar way as above, we can show that dist(F(z), OF(D)) 4A
dist(z, OD) therefore we obtain F*(p I1) (4A) q ,F().

3. The local qc-extensibility. The "local" norms of the Schwarzian
faithfully measure the local qc-extensibility of the function. Now we shall
state this in a precise form. Firstly the next lemma directly follows from
Theorem 1.1 and the definition of the norm.
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Lemma 8.1. Let D be a hyperbolic plane domain, A >_ 1 and k [0, 1)
be constants and f D-- be a meromorphic function.

If f l can be extended to a k-qc map of for any A A(D), then

SI [[A) <_ 6kAY.. Conversely, if s II A> <_ 2kA2, then f l can be extended to a

k-qc map of C for any A A (D).
Combining this lemma with the results of preceding section, we obtain.

the following theorem (cf. [1]).
Theorem 3.2. Let D be a hyperbolic plane domain, A > I and k [0, 1)

be constants and f D-- be a meromorphic function.
If f I can be extended to a k-qc map of for any A (D) and if D is

simply connected, then S
can be extended to a k-qc map,of for any zl (D).

This result is crucial in author’s paper [5] to estimate the norm of the
Schwarzian derivative of a meromorphic map which is constructed by a cer-
tain qc-deformation and so has difficulties to calculate their derivatives.

4, The injeetivity radius. In this section we shall explain that the (19c-
al) norm of the Schwarzian derivative measures local injectivity. Let d-- dD
denote the hyperbolic distance on D which is induced by the hyperbolic
metric pD(z) ldz]. It is well-known that, for the unit disk U, d(0, z)=

-log 1-- z[ arctanhlz I.
For each function f which is meromorphic on a plane hyperbolic domain

1
D we let (f)= a,(f)the injectivity radius of f, that is, (f)--inf
{d(zl, zz) ;f(zl) -f(zz), z 4: z D). We remark that a(f) co if f is
univalent. Firstly, in the case that D U, Theorems 1.1 produces the next
result due to Kra-Maskit [3], although the original form is apparently dif-
ferent from the next one.

Proposition 4.1 (Kra-Maskit). Let f be a meromorphic function on the
unit disk U and a- a(f) < co. Then

2 coth a -< SI IIu -< 6 coth a.
Corollary 4.2 (cf. [6]). For a meromorphic function f on the unit disk U,
< if and only if a (f) > O.

Proof of Proposition 4.1. By the hypothesis, for any a > a(f) there ex-
ist two points zx, zz in U such that f(z) f(zz) and 0 < d(zl, zz) < 2ax.
Let Zo be the midpoint of’ the hyperbolic segment joining z and zz and Zl de-
note the hyperbolic disk {z d(zo, z) <

Since f[ is not univalent,
and choose T M6b such that T(U) U and T(0) Zo. It follows from
the identity Sor Se T" (T’) that

II(a’ > Az > 2A-> S or
where we should note that T-(A) B(0, tanh al)
a(f) is arbitrary, we have the first inequality.

Next, we shall prove the second inequality. Let Zo U be any point and
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A {z U ;d(zo, z) < a}, where a a(f). By the hypothesis, f ]a is uni-

valent, so we have Ilsl[ <-6 by the Nehari-Kraus theorem. We again

choose T M6b such that T(U) U and T(0) z0. Then we have

S(zo) ov(Zo) - Sor(o) or(o) - Sor(O) pr-<a (0) - coth a
-< So II-<> coth a s [l coth a <- 6 coth a,

and proof is completed.
Example. Let R be a hyperbolic Riemann surface and 7r: U--* R be a

holomorphic universal covering map of R. For simplicity, suppose that R is

of (topologically) finite type. Then, by Corollary 4.2,
< oo > 0 R has no punctures.

Generally, if R has a puncture, then S []v oo by the same reasoning.

Secondly, we return to the case of a general hyperbolic domain D.
Proposition 4.3. Let f be a meromorphic map on D with positive injectivity

radius a ao (f). Then S I[() N 6 coth2 a.

Proof We set A coth a. Let zo be an arbitrary point in D and K be
the Poincar disk {z D do(z, Zo) < a}. Then,’ we note that f is univalent
in K. Set ro infzo z Zo I, r inf,oo [z zo and zl B(zo, r)
(j 0, 1).

By the monotonicity, d(z, zo) N d,(z, Zo), and hence

a= inf do(z, zo) <- inf d(z, zo) inf arctanhlZ’ --Zol arctanh ro
z OK OK z OK I’1 ’1

ro r__ < A coth . If we now letThus we conclude that tanh a <_ -_, that is, ro"1

A B(zo, r) A(D) then rl _>A> rl_- so r < To. This yields that A c
r ro

A o c K, and hence f l is univalent. So, the Nehari-Kraus theorem implies

that s ll -< 6. Therefore s ll; ’ _< 6A= 6 coth2 a. The statement now

readily follows from Theorem 2.1 (b).
Remark. Proposition 4.3 is, in some sense, a rough estimate because

the injectivity radius aD(f) is conformally invariant, while the norm of the
Schwarzian derivative is not.
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