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48. A Class of Norms on the Spaces of Schwarzan Derivatives
and its Applications®

By Toshiyuki SUGAWA

Department of Mathematics, Kyoto University
(Communicated by Kiyosi ITO, M. J. A., Sept. 13, 1993)

§0. Introduction. As is well-known, the hyperbolic-sup norm (or the
Nehari norm) of the Schwarzian derivative of a meromorphic function is
closely related to its (global or local) univalence. The famous Nehari-Kraus
theorem and Ahlfors-Weill theorem are of fundamental importance in this
direction of research.

In this note, in order to clarify this relationship more, we shall intro-
duce, in section 2, a class of “local” norms on the space of Schwarzians.
These norms are expected to be near the hyperbolic-sup norm, and deter-
mined by the local shape of the domain. But, whereas the pullback by a con-
formal map is an isometry with the hyperbolic-sup norm, it is only a
quasi-isometry with these local norms. In section 3, we shall describe how
the magnitude of norms of Schwarzian is controled by the local quasiconfor-
mal(= qc) extensibility, which the author has learned from [1]. An essential
use of the result in this section will be made in the article [5] of the author.
Finally, in section 4, we shall mention an estimate of the local norms of
Schwarzian by the injectivity radius.

§1. Preliminaries. Throughout this note, let D be a plane domain of
hyperbolic type (i.e., C\ D contains at least two points) and o,(2) | dz| be
the hyperbolic metric with constant negative curvature — 4. For a holomor-
phic function ¢ on D, we define the hyperbolic-sup norm of ¢ by (7 ||D =
sup,ep 0@ 2| ¢(2) | and we denote by B,(D) the space of all holomorphic
functions in D with a finite norm, which becomes a complex Banach space.
For a non-constant meromorphic function f on D, the Schwarzian derivative

1
of f is defined by the formula S, = (f”/f’)’—g(f”/f’)z, which is

holomorphic at z, € l] if aAnd only if f is locally univalentAat 2,.

In this note, f : C— C shall be called a k-gc map of C where k is a con-
stant and 0 < k < 1, jf f is an orientation-preserving self-homeomorphism of
the Riemann sphere C with locally L’-derivatives such that | d;f| < k|d,f]
a.e. It should be alerted that this terminology is not standard. In fact, k-qc

1+ k
map is ordinarily called “K-qc” where K = 1 — % As a general reference
for qc maps and the hyperbolic sup-norm of the Schwarzian derivatives, we
refer to [4].

*) Dedicated to Professor Nobuyuki Suita on his sixtieth birthday.
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The following theorem is fundamental for our present aim (e.g. see [4]
pp. 60, 72 and 87). The first assertion and the last one are known as the
Nehari-Kraus theorem and the Ahlfors-Weill theorem, respectively.

Theorem 1.1. If a meromorphic function on the disk A is univalent, then
IS, s < 6. Moreover if f is extended to a k-qc map of C, then | S, |, < 6k.

Conversely, each meromorphic function f on a disk A with | S, |, < 2 is

1 R
uwivalent, and if || S, ls < 2, then f can be extended to a 7 I S, ll5-gc map of C.

§2. A class of norms. Now we define certain norms which are deter-
mined by only local deta of the domain. The same ideas here were appeared
in some earlier works in this area, not necessarily in explicit forms.

Let 1< A< o be a constant, D be a plane domain and define
P,(D) =A{B(z,, v ;r> 0, B(z,, Ar) € D}, where B(z,r) =1{z€ C;
|z — z(,] < #}. For a holomorphic function ¢, we define

loly' =A% sup lol,
AP 4(D)
and
loly = sup | (2) | dist(z, aD)*.
F4
The reason for the above notation | * ||j;°’ will be explained in Remark 1 of
Theorem 2.1. ,

The hyperbolic-sup norm have a monotonicity property that “(,DHDl
<o ”D2 if D, © D,, which is a conclusion of the Schwarz-Pick lemma. For
the above defined norms this property trivially holds, that is, if D, C D,,
then || ¢ lm) <le ||LAZ) forl1 £ A < oo,

The following theorem gives a basic estimate for our norms.

Theorem 2.1.

@ ol <lel,
o) lely? <lely” ifl <A <A, < o,

2A 2 (00) (00)
@ loly < (—E—) loly (< 4lol5.
P T\ A+ /A - ?

Proof. Let 1< A, <A,<o,4=DB(z,7r €D,(D), and set A=
A,/A,, & = Bz, AP (€ 8, (D). Since p,(2) = 4
Ar
AP — |z — z,|
sup 0, % @@ | < A2 sup o, (D72 9@ | < A?| @l and this implies
Al oll, < Afll¢l,. Therefore (b) follows if A, < . In the case that A,
< A, = o, for arbitrary 2z, € D let 6 = dist(z,, 0D), r = 0/A, and 4 =

1 A
B(z,, » (€ 9, (D)). Then p,(z) = = _51 so we have 0] @(z) | = A,
0,20 1 0) | <A@l <@l and thus we now get part (b) for A, = oo,
Once (b) obtained, it suffices to prove (a) in the case A = 1, in which
case (a) naturally follows from the monotonicity of the hyperbolic-sup norm.

2 z’pd’(‘z)=
r'—lz— 2z

>, we have p,,(2) /0,(2) <1/A for all z € A. Thus | ¢, =

2
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Finally we show the statement (c). Let 0(2) = dist(z, D) for z € D
and 4 = B(z,, ) € 9,(D) . Then (c) is directly deduced from the following

A+ /A" -1

lower estimate §(2)p,(2) Z————-z———(VZE 4). Without loss of
generality, we can assume that z, = 0. Since 0(2) = 6(0) — |z| = 7A — | z|,
r(rA —
it follows that 0(2)p,(2) 2% and an elementary calculation
r'—|z
shows that 5
r(PA — | z]) . A+ /A —1
(*) 2 2 = 2
ri—1z|
r

for 0 < | z| < 7, where equality holds for | 2l =— f—

A+ A —1

Remark 1. From (b) and (c¢) it follows that ”(0”;, ||(0”(A)
2A 2 ~ .

(—2—) I ely. thus lim,. o2 = ¢ l5”, which is a reason
A+ VA" —1

why we use the notation || « ||;,°°)
2A

A+ /A —1
shall explain this fact for A > 1. Let D = U= B(0,1), r=1/A, A = B(0, 7)

and a = —-—12—--— Note that 4 € 9,(D) and a € 4. Next, we choose a
A+JA —1
sufficiently large integer # and a positive real number @ € <0, g) such that
n— 2a " o
a=" 15 . Put 9,,(2) = (z+ ", then I @nelly = sup, (1 —12zD*

2
Remark 2. The constant < ) in (c) is best possible. We

lz+al"= 1 — &) + a)”. On the other hand from the equahty in (%),
we have || @, ., 2 0, @ la+ al"= C/A+ JA*— 1) @0 ]Iy, hence,
2A

4) 2 (o0)
| nal = 41 . ||Az(ﬁm——:) I nalls”-

The opposite inequality is already obtained in Theorem 2.1 (c¢), and hence we
conclude that equality holds in the above.

From the above theorem, it turns out that norms || . ||;,A) are equivalent
to each other (1 £ A < ), so we have a complex Banach space B,(D) =
{¢ : holomorphic function on D and | ¢ ||(A) < oo}, which is independent of
the special choice of A.

By Theorem 2.1 (a), we obtain that B,(D) € B,(D), but unfortunately,
these two spaces does not coinside generally. The following theorem gives a
geometric criterion for the coincidence of the two spaces. (The implication
(i) = (ii) is a conclusion from the Banach open mapping theorem.)

Theorem 2.2 (Beardon-Pommerenke [2]). The followings are equivalent to
each other.

(1) B(D)CB(D)

(11) There exists a constant ¢ > 0 such that | @ ||D <cleo ||

B,(D),

(c0)

for all ¢ €
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(ii1) sup{mod A ; A is an annulus in D which separates the boundary of
log R
D} < oo, wheremod A = loggr ifA={z;r<|z— 2| <R).
On the other hand, for simply connected domains, the Koebe one-quarter
theorem yields the following
Theorem 2.3 (cf. [2]). If D is a simply connected domain of the hyperbolic
type, then

lol, <16l ¢l,".

Thus, for simply connected plane domains all the above norms are
equivalent. We conclude this section with an exposition of the quasi-
isometricity of the pullback by conformal maps with respect to these norms.

Suppose that F maps a domain D conformally into C. For ¢ €
B,(F(D)) let F*¢ denote the pullback of ¢ by F as a holomorphic quadratic
differential, that is, F ¢ = @< F + (F)® This pullback is an isometry with
the hyperbolic-sup norm, that is, || F*¢ |, = | @ llpp,. While, with the local
norms, the pullback is only a quasi-isometry.

Proposition 2.4. Suppose that F maps a hyperbolic plane domain D confor-
mally into C. Then | F go||(°°) <16 ||q0||;°:},) Moreover if F is a Mobius

2
transformation, then we have a better estimate: |F*o |’ < (__3)
an A+ A" 1+ A

" @ ”F(D) where A = 1, A = _2_

Proof. The first assertion directly follows from the inequality:
. 1 . .
dist(F(2), 0F(D)) = Z|F’(z) | dist(z, D), which is an easy consequence

from the Koebe one-quarter theorem~. Next suppose that F is a Mébius map.
Let 4 = B(z,, ) € 9,(D) and set 4 = B(z,, A). We now assert that 4" =
F4) € 9, (F(D)). We may assume that F(4) = 4 = U and that F(2) =
+ _
lz+ Zz where 0 < a < 1. Since the center of F(4) is ¢ = 2(F(A H +
F(—A ") and the radius is 7 = = 5 (F(A Y — F(— A™)), and therefore

L= > 4, it follows that F(4) € B 12(U) © 9,/ (F(D)). By the above

r
assertion, we obtain an inequality || F*¢ L=1¢lra < @72 II(F“I(;,)),

which proves the second assertlon

Remark 1. In particular, | F* 10 ||m = ";}()D) if Fis a Mobius map.

Remark 2. Let A =1 and suppose that F : D— C is a holomorphic
map which excludes at least two points and | Sp ||D < 2A% Then, by the
similar way as above, we can show that dist(F(2), 0F(D)) Z——I F41(:)|
dist(z, 8D), therefore we obtain || F*¢ ||(°°) @A | ¢ 5,

§3. The local qc-extensibility. The “local” norms of the Schwarzian
faithfully measure the local qc-extensibility of the function. Now we shall
state this in a precise form. Firstly the next lemma directly follows from
Theorem 1.1 and the definition of the norm.
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Lemma 3.1. Let D be a hyperbolic plane domain, A =1 and k € [0, 1)
be constants and f : D— C be a meromorphic function.

If fl, can be extended to a k-qc map of C for any A € D,(D), then
[ S, ||(A) < 6kA° Conversely, if | S, ||;,A) < 2kA% then fly can be extended to a
k-qc map of C for any A € D,(D).

Combining this lemma with the results of preceding section, we obtain.
the following theorem (cf. [1]).

Theorem 3.2. Let D be a hyperbolic plane domain, A = 1 and k € [0, 1)
be constants and f : D— € be a meromorphic function.

If f |, can be extended to a k-q¢ map of C for any A € D,(D) and 1fD is
simply connected, then | S I, < 96kA°. Conversely, if || S, I, < 2kA%, then f |
can be extended to a k-qc map of C for any A € D,(D).

This result is crucial in author’s paper [5] to estimate the norm of the
Schwarzian derivative of a meromorphic map which is constructed by a cer-
tain qc-deformation and so has difficulties to calculate their derivatives.

§4. The injectivity radius. In this section we shall explain that the (loc-
al) norm of the Schwarzian derivative measures local injectivity. Let d = d,,
denote the hyperbolic distance on D which is induced by the hyperbolic
metric p,(2) | dz|. It is well-known that, for the unit disk U, d(0, 2) =
1 14 |z|

El T_rz—T = arctanh | z]|.

For each function f which is meromorphic on a plane hyperbolic domain
1.
D we let o(f) = g,(f) the injectivity radius of f, that is, o(f) = 5 inf

{dp(z, 2p) ; f(z) = f(2), 2, # 2z, € D}. We remark that o(f) = o if f is
univalent. Firstly, in the case that D = U, Theorems 1.1 produces the next
result due to Kra-Maskit [3], although the original form is apparently dif-
ferent from the next one.

Proposition 4.1 (Kra-Maskit). Let f be a meromorphic function on the
unit disk U and 0 = o(f) < o, Then

2 coth’ 0 < || S, |, < 6 coth® 0.

Corollary 4.2 (cf. [6]). For a meromorphic function f on the unit disk U,
IS/ lly < o0 if and only if a () > 0.

Proof of Proposition 4.1. By the hypothesis, for any o, > a(f) there ex-
ist two points 2y, 2, in U such that f(z,) = f(z,) and 0 < d(z, 2z,) < 20,.
Let 2z, be the midpoint of the hyperbolic segment joining 2z, and 2z, and 4 de-
note the hyperbolic disk {z ; d(zy, 2) < a,}.

Since f|, is not univalent, | S; [, > 2 by Theorem 1.1. Let A = coth g,
and choose T € Mob such that T(U) = U and T(0) = 2, It follows from
the identity S,OT =S,T+ (T")? that

IS ly =1 Srrlly =1l SM I = A Syr | g1y = A S, [y > 247,

where we should note that T~'(4) = B(0, tanh 6,) € 9,(U). Because o, >
o(f) is arbitrary, we have the first inequality.
Next, we shall prove the second inequality. Let 2, € U be any point and
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A= {z€ U,;d(z, 2 < o}, where ¢ = o(f). By the hypothesis, f |, is uni-
valent, so we have |S;[, < 6 by the Nehari-Kraus theorem. We again
choose T € Méb such that T(U) = U and T(0) = 2, Then we have

|S,(z9) | 00(20) ™2 =1 S,.2(0) | 05(0) 2 = | S,.7.(0) | pp-15,(0) * coth® &
<|1S,.7 g1 coth® @ = | S, ||, coth® o < 6 coth’ o,

and proof is completed.

Example. Let R be a hyperbolic Riemann surface and w : U— R be a
holomorphic universal covering map of R. For simplicity, suppose that R is
of (topologically) finite type. Then, by Corollary 4.2,

IS,y < o © oa(x) > 0< R has no punctures.

Generally, if R has a puncture, then || S, ||, = © by the same reasoning.
Secondly, we return to the case of a general hyperbolic domain D.
Proposition 4.3. Let f be a meromorphic map on D with positive injectivity

radius 0 = a,(f). Then| S, |;” < 6 coth’ o.

Proof. We set A = coth g. Let 2z, be an arbitrary point in D and K be
the Poincaré disk {z € D ; d,(z, z,) < o}. Then, we note that f is univalent
in K. Set 7,=inf,c;xlz— 2|, r, =inf,c;p|2— 2,] and 4; = B(z, 7;)
(7=0,1.

By the monotonicity, dy(2, 2,) < d, (2, 2,), and hence

. . . |z — z,| %o
o= inf dp(z, 2) < inf d, (2, z) = inf arctanh ———>— = arctanh —".
2€0K 20K 20K " 61

7, 7
Thus we conclude that tanh ¢ < 70— that is, _rl < A = coth 0. If we now let
1 0

s
A = B(z,, ¥) € 9,(D), then 7‘ >A> ;‘— so 7 < 7, This yields that 4 C
0

A, © K, and hence f|A is univalent. So, the Nehari-Kraus theorem implies
that || S, |, < 6. Therefore || S, ||1(>A) < 6A% = 6 coth’ 0. The statement now
readily follows from Theorem 2.1 (b).

Remark. Proposition 4.3 is, in some sense, a rough estimate because
the injectivity radius o,(f) is conformally invariant, while the norm of the
Schwarzian derivative is not.
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