38. A Remark to the Paper "On the Stabilizer of Companion Matrices" by J. Gomez-Calderon

By You ASAEDA
Department of Mathematics, Gakushuin University
(Communicated by Shokichi IYanAGA, M. J. A., June 8, 1993)

In the paper [1] cited in the title, the following question is treated.
Let R be a commutative ring with $1, M$ the ring of $n \times n$ matrices over $R, n \geq 2, f(X)=X^{n}-\sum_{i=0}^{n-1} b_{i} X^{i}$ a polynomial of degree n in $R[X]$, $C(f)$ the companion matrix of $f(X)$ defined by

$$
C(f)=\left(\begin{array}{ccccc}
0 & \cdots & \cdots & 0 & b_{0} \\
1 & \ddots & & \vdots & b_{1} \\
0 & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & 0 & \vdots \\
0 & \cdots & 0 & 1 & b_{n-1}
\end{array}\right)
$$

(which has $f(X)$ as the characteristic polynomial). An element A of M such that

$$
\begin{equation*}
A C(f)=C(f) A \tag{*}
\end{equation*}
$$

is called a stabilizer of $f(X)$, the set of which will be denoted by $S(f)$. In [1], a characterization of $A \in S(f)$ is given, and as an application, the following result is proved:

If R is a finite field F and $f(X)$ is irreducible, then every non-zero element of $S(f)$ is invertible.

The proof of this fact given in [1] is based on [2] and uses essentially the finiteness of F. In this note, another characterization of $S(f)$ will be given (Theorem 1) and it will be proved that the above proposition holds for any field F (Theorem 2).

The above notations $R, M, C(f), S(f)$ will be used in the same meanings throughout this note.

Theorem 1. $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$ being n column vectors $\in \boldsymbol{R}^{n}$, the follwing four conditions on $A=\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right) \in M$ are mutually equivalent.

$$
\begin{equation*}
A C(f)=C(f) A, \quad \text { i.e. } \quad A \in S(f) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{a}_{i+1}=C(f) \boldsymbol{a}_{i}, \quad i=1,2, \ldots, n-1 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{a}_{i}=C(f)^{i-1} \boldsymbol{a}_{1}, \quad i=1,2, \ldots, n \tag{3}
\end{equation*}
$$

(4) A can be expressed as $g(C(f)), g(X) \in R[X], \operatorname{deg} g(X) \leq n-1$.

Proof. In computing both sides of $(*)$ for $A=\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right)$ we obtain

$$
\left(\boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}, \sum_{i=0}^{n-1} b_{i} \boldsymbol{a}_{i+1}\right)=\left(C(f) \boldsymbol{a}_{1}, \ldots, C(f) \boldsymbol{a}_{n}\right)
$$

Comparing the first $n-1$ columns, we see

$$
\boldsymbol{a}_{i+1}=C(f) \boldsymbol{a}_{i}, \quad i=1,2, \ldots, n-1
$$

This coincides with (2), and we have (1) $\Rightarrow(2)$.
$(2) \Rightarrow(3)$ is obvious.
Now suppose A satisfies (3) i.e.

$$
A=\left(\boldsymbol{a}_{1}, C(f) \boldsymbol{a}_{1}, \ldots, C(f)^{n-1} \boldsymbol{a}_{1}\right)
$$

Considering $f(X)$ as fixed, this matrix A is determined by \boldsymbol{a}_{1}. We shall therefore write $A\left(\boldsymbol{a}_{1}\right)$ for above A. Obviously $A(\boldsymbol{a})$ depends linearly on $a: A(a \boldsymbol{a}+b \boldsymbol{b})=a A(\boldsymbol{a})+b A(\boldsymbol{b}), a, b \in \boldsymbol{R}, \boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{R}^{n}$. Put now

$$
\boldsymbol{e}_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), \ldots, \boldsymbol{e}_{n}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right), \boldsymbol{a}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)=\sum_{i=1}^{n} a_{i} \boldsymbol{e}_{i} .
$$

From the form of $C(f)$, one sees immediately

$$
\boldsymbol{e}_{i+1}=C(f) \boldsymbol{e}_{i}=C(f)^{i} \boldsymbol{e}_{1}, \quad i=1,2, \ldots, n-1
$$

and

$$
C(f) \boldsymbol{e}_{n}=\sum_{i=0}^{n-1} b_{i} \boldsymbol{e}_{i+1}=\left(\sum_{i=0}^{n-1} b_{i} C(f)^{i}\right) \boldsymbol{e}_{1}=C(f)^{n} \boldsymbol{e}_{1}
$$

where the last equality

$$
\sum_{i=0}^{n-1} b_{i} C(f)^{i}=C(f)^{n}
$$

follows from Hamilton-Cayley's theorem, as $f(X)$ is the characteristic polynomial of $C(f)$.

Thus we have

$$
\begin{aligned}
& A\left(\boldsymbol{e}_{1}\right)=\left(\boldsymbol{e}_{1}, C(f) \boldsymbol{e}_{1}, \ldots, C(f)^{n-1} \boldsymbol{e}_{1}\right)=\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right)=E \\
& A\left(\boldsymbol{e}_{2}\right)=\left(C(f) \boldsymbol{e}_{1}, C(f)^{2} \boldsymbol{e}_{1}, \ldots, C(f)^{n} \boldsymbol{e}_{1}\right)=C(f) A\left(\boldsymbol{e}_{1}\right)=C(f), \\
& \quad . \\
& A\left(\boldsymbol{e}_{n}\right)=C(f)^{n-1}
\end{aligned}
$$

and so

$$
A(\boldsymbol{a})=a_{1} E+a_{2} C(f)+\ldots+a_{n} C(f)^{n-1}
$$

which shows $(3) \Rightarrow(4)$. (4) $\Rightarrow(1)$ is obvious.
Theorem 2. Let R be a field F and $f(X)$ be irreducible in $F[X]$. Then any non-zero element A of $S(f)$ is invertible.

Proof. By (4) of the last Theorem, $A \in S(f)$ can be written in the form $g(C(f))$ where $g(X)=\sum_{i=0}^{n-1} a_{i} X^{i} \in F[X]$ and $g(X) \neq 0$ as $A \neq 0$. The eigen values $\alpha_{1}, \ldots, \alpha_{n}$ of $C(f)$ are the roots of $f(X)=0$, and as $f(X)$ is irreducible of degree $n, g\left(\alpha_{i}\right) \neq 0, i=1, \ldots, n$. Now the eigen values of A $=g(C(f))$ are $g\left(\alpha_{i}\right), i=1, \ldots, n$ are $\operatorname{det} A=g\left(\alpha_{1}\right) \cdots g\left(\alpha_{n}\right) \neq 0$. So A is invertible.

Remark. The following is known. (Cf. e.g. [3].) Let C be an $n \times n$ matrix over a field F such that its characteristic polynomial coincides with its minimal polynomial. Then any matrix $A \in M$ which commutes with C can be expressed as $g(C), g(X) \in F[X]$, deg $g \leq n-1$. But if we take a commutative ring R instead of a field F, this statement is not true in general.

References

[1] J. Gomez-Calderon: On the stabilizer of companion matrices. Proc. Japan Acad., 69 A, 140-143 (1993).
[2] L. E. Dickson: Linear Groups. New York (1958).
[3] K. Shoda: Ueber die mit einer Matrix vertauschbaren Matrizen. Math. Z., 29, 696-712 (1929).

