22. Pre-special Unit Groups and Ideal Classes of $Q(\zeta_p)^+$

By Fumika KURIHARA

Department of Mathematics, Tokyo Institute of Technology

(Communicated by Shokichi IYANAGA, M. J. A., April 13, 1992)

Let *m* be a positive integer and $Q(\zeta_m)^+$ the maximal real subfield of the field of *m*-th roots of unity. Let E_m be the global unit group of $Q(\zeta_m)^+$ and let C_m be Karl Rubin's special unit group of $Q(\zeta_m)^+$ (see [4]). Then Rubin's main results in [4] implies the following:

Theorem (cf. Th 1.3 and Th 2.2 of [4]). If $\alpha : E_m \to Z[\operatorname{Gal}(Q(\zeta_m)^+/Q)]$ is any $\operatorname{Gal}(Q(\zeta_m)^+/Q)$ -module map, then $4\alpha(\mathcal{C}_m)$ annihilates the ideal class group of $Q(\zeta_m)^+$.

When *m* is an odd prime *p*, our result (Th 3) gives a condition for $\alpha(\mathcal{C}_m)$ to be a "minimal" element that annihilates the ideal class group of $Q(\zeta_p)^+$.

Let p be a fixed prime number and let $S_p = \{l; \text{ odd prime number such that } l \equiv \pm 1 \pmod{p}\}, S_p^+ = \{l \in S_p; l \equiv 1 \pmod{p}\}$. For any prime number l in S_p , we denote by $Q(\zeta_p, \zeta_l)^{++}$ the composite field of $Q(\zeta_p)^+$ and $Q(\zeta_l)^+$. We fix any prime ideal l of $Q(\zeta_p)^+$ above l and we write \tilde{l} for the prime ideal of $Q(\zeta_p, \zeta_l)^{++}$ above l. Also we fix any generator σ of $G = \text{Gal}(Q(\zeta_p, \zeta_l)^{++}/Q(\zeta_l)^+)$. Let $E_p, E_{p,l}$ be the group of global units of $Q(\zeta_p)^+, Q(\zeta_p, \zeta_l)^{++}/Q(\zeta_l)^+)$. We define $\mathcal{C}_p(l) = \{\eta \in E_{p,l}; N_{Q(\zeta_p,\zeta_l)^{++/Q(\zeta_p)+}(\eta)=1\}, \mathcal{C}_p(l) = \{\varepsilon \in E_p; \exists \eta \in \mathcal{C}_p(l) \text{ such that } \varepsilon^2 \equiv \eta \pmod{\prod_{j=0}^{(p-3)/2} \tilde{l}^{\sigma_j}}\}$. We call $\mathcal{C}_p(l)$ the pre-l-special unit group of $Q(\zeta_p)^+$, and we define the special unit group of $Q(\zeta_p)^+$ by $\mathcal{C}_p = \{\varepsilon \in E_p; \varepsilon \in \mathcal{C}_p(l) \text{ for all but finitely many } l \text{ in } S_p\}$ (see [4]).

We fix any sufficiently large integer M, and we put $S_p^{(M)} = \{l \in S_p^+; l \equiv 1 \pmod{p^M}\}$. Let g_p be a primitive root modulo p such that $\sigma(\zeta_p) = \zeta_p^{g_p}$, and for $i=0, \cdots, (p-3)/2$, let $\varepsilon_i = 2/(p-1) \sum_{j=0}^{(p-3)/2} \omega^{-2i} (g_p^j) \sigma^j$ be the idempotents in $Z/p^M Z[G]$, where ω is the Teichmüller character. Then $E_p/E_p^{p^M} = \bigoplus_{i=1}^{(p-3)/2} \varepsilon_i (E_p/E_p^{p^M})$. For each $i=1, \cdots, (p-3)/2$, we take any basis η_i of $\varepsilon_i (E_p/E_p^{p^M})$ and let $\alpha : E_p/E_p^{p^M} \to Z/p^M Z[G]$ be a G-module map such that $\alpha(\eta_i) = \varepsilon_i$. We sometimes use the following condition for l.

Condition-L. Let l be a prime number in $S_p^{(M)}$. There is a G-module map

$$\varphi: (Z[\zeta_p]^+/lZ[\zeta_p]^+)^{\times} \otimes Z/p^M Z \rightarrow Z/p^M Z[G]$$

such that the following diagram is commutative:

Here, $Z[\zeta_p]^+$ is the integer ring of $Q(\zeta_p)^+$ and ψ is the reduction map.

F. KURIHARA

Now for any prime number l in \mathcal{S}_p^+ , let I_l , P_l be the fractional ideal group and the principal ideal group of $Q(\zeta_p, \zeta_l)^{++}$ respectively. We denote by $I_p^{(l)}$ the lift of the fractional ideal group of $Q(\zeta_p)^+$ into $Q(\zeta_p, \zeta_l)^{++}$. Let \mathfrak{C}_p be the ideal class group of $Q(\zeta_p)^+$, and we define the l-ideal class group $\mathfrak{C}_p^{(l)}$ of $Q(\zeta_p, \zeta_l)^{++}$ to be $\mathfrak{C}_p^{(l)} = I_l/_{P_l}I_p^{(l)}$. We denote by $(\mathfrak{l}), (\mathfrak{l})_l$ the ideal class, the l-ideal class of $\mathfrak{l}, \mathfrak{l}$ respectively. Let $\mathfrak{C}_p^{(l)'}$ be the subgroup of $\mathfrak{C}_p^{(l)}$ generated by $\{(\mathfrak{l}^{i})\}_{0\leq j\leq (p-3)/2}$. We put $A_p = \mathfrak{C}_p/p^M\mathfrak{C}_p, A_p^{(l)} = \mathfrak{C}_p^{(l)'}/p^M\mathfrak{C}_p^{(l)'}$, then $A_p = \bigoplus_{i=1}^{(p-3)/2} \varepsilon_i A_p, A_p^{(l)} = \bigoplus_{i=1}^{(p-3)/2} \varepsilon_i A_p^{(l)}$. We denote by $[\mathfrak{l}], [\mathfrak{l}]_l$ the projection of $(\mathfrak{l}), (\mathfrak{l})_l$ into $A_p, A_p^{(l)}$.

Let v_p be the *p*-adic valuation normalized by $v_p(p) = 1$. For any subgroup *H* of E_p , we write $(E_p/H)_p = (E_p/H)_{p,M}$ for $(E_p/E_p^{pM})/(H/H \cap E_p^{pM})$.

Our main theorem states the following.

Theorem 1. For each i=1, ..., (p-3)/2;

- (i) If $l \in S_p^+$, then $v_p(|\epsilon_i(E_p/C_p(l))_p|) \le v_p(\text{ord } \epsilon_i[\tilde{l}]_l).$
- (ii) If $l \in S_p^{(M)}$ then $v_p(\text{ord } \varepsilon_i[[1]) \le v_p(\text{ord } \varepsilon_i[\tilde{l}]_l).$
- (iii) If $l \in S_p^{(M)}$ and l satisfies the Condition-L then $v_p(|\varepsilon_l(E_p/\mathcal{C}_p(l))_p|) = v_p(\text{ord } \varepsilon_l[\tilde{l}]_l).$

From Th 1 (iii), we obtain a relation between the *p*-part of the index of the pre-*l*-special unit group and the order of the ideal class of \tilde{l} .

Next, using Th 1, we shall discuss some relation between $(E_p/C_p)_p$ and A_p . Let $m_0 = m_0^{(i)} = \min\{m; 0 \le m \in \mathbb{Z}, p^m \varepsilon_i A_p = 0\}$. Then from Rubin's Theorem above and the definition of α , we have $m_0 \le v_p(|\varepsilon_i(E_p/C_p)_p|)$. Now, let $\mathcal{S}_p^{(M,\alpha)} = \{l \in \mathcal{S}_p^{(M)}; l \text{ satisfies the Condition-L}\}$ and let $\mathcal{C}_p^{(M,\alpha)} = \{\varepsilon \in E_p; \varepsilon \in \mathcal{C}_p(l) \text{ for all but finitely many } l \text{ in } \mathcal{S}_p^{(M,\alpha)}\}$, then clearly $\mathcal{C}_p \subset \mathcal{C}_p^{(M,\alpha)}$. It is not known whether $m_0 = v_p(|\varepsilon_i(E_p/\mathcal{C}_p^{(M,\alpha)})_p|)$, but we have the following.

Proposition 2. The inequality $m_0 \leq v_p(|\epsilon_i(E_p/\mathcal{C}_p^{(M,a)})_p|)$ holds.

Particularly, if $\epsilon_i A_p$ is cyclic then $m_0 = v_p(|\epsilon_i(E_p/\mathcal{C}_p^{(M,\alpha)})_p|)$.

And we give the following condition for $m_0 = v_p(|\varepsilon_i(E_p/\mathcal{C}_p^{(M,\alpha)})_p|)$.

Theorem 3. The equality $m_0 = v_p(|\varepsilon_i(E_p/C_p^{(M,\alpha)})_p|)$ holds if and only if there exists a prime number l satisfying

- (i) $l \in \mathcal{S}_{p}^{(M,\alpha)}$
- (ii) $\varepsilon_i(\mathcal{C}_p^{(M,\alpha)}/\mathcal{C}_p^{(M,\alpha)}\cap E_p^{pM}) = \varepsilon_i(\mathcal{C}_p(l)/\mathcal{C}_p(l)\cap E_p^{pM})$
- (iii) $v_p(\text{ord }\varepsilon_i[\mathfrak{l}]) = v_p(\text{ord }\varepsilon_i[\tilde{\mathfrak{l}}]_l).$

It is not known whether or not there exists an l satisfying (i)-(iii) of Th 3 in general. But we obtain the following.

Proposition 4. For each $i=1, \dots, (p-3)/2$, there are infinitely many rational primes l satisfying:

(i) $l \in \mathcal{S}_p^{(M,\alpha)}$

(ii) $\varepsilon_i(\mathcal{C}_p^{(M,\alpha)}/\mathcal{C}_p^{(M,\alpha)}\cap E_p^{pM}) = \varepsilon_i(\mathcal{C}_p(l)/\mathcal{C}_p(l)\cap E_p^{pM}).$

It is not known whether or not $p \nmid [C_p^{(M,\alpha)} : C_p]$. If $v_p(|\varepsilon_i(C_p^{(M,\alpha)}/C_p)_p|) = 0$ then from Th 3 we have $m_0 = v_p(|\varepsilon_i(E_p/C_p)_p|)$ if and only if there exists a prime number l satisfying (i)-(iii) of Th 3.

References

- Kummer, E.: Über eine besondere Art, aus complexen Einheiten gebildeter Ausdrücke. J. Reine Angew. Math., 50, 212-232 (1855).
- [2] Lang, S.: Cyclotomic Fields. Graduate Texts in Mathematics, Springer-Verlag, New York (1989).
- [3] Mazur, B. and Wiles, A.: Class fields of abelian extensions of Q. Invent. Math., 76, 179-330 (1984).
- [4] Rubin, K.: Global units and ideal class groups. ibid., 89, 511-526 (1987).
- [5] Thaine, F.: On the ideal class groups of real abelian number fields. Ann. of Math., 128, 1-18 (1988).
- [6] Washington, L. C.: Introduction to Cyclotomic Fields. Graduate Texts in Mathematics, Springer-Verlag, New York (1982).