22. Pre-special Unit Groups and Ideal Classes of $Q\left(\zeta_{p}\right)^{+}$

By Fumika Kurihara
Department of Mathematics, Tokyo Institute of Technology
(Communicated by Shokichi Iyanaga, m. J. A., April 13, 1992)

Let m be a positive integer and $\boldsymbol{Q}\left(\zeta_{m}\right)^{+}$the maximal real subfield of the field of m-th roots of unity. Let E_{m} be the global unit group of $\boldsymbol{Q}\left(\zeta_{m}\right)^{+}$ and let \mathcal{C}_{m} be Karl Rubin's special unit group of $\boldsymbol{Q}\left(\zeta_{m}\right)^{+}$(see [4]). Then Rubin's main results in [4] implies the following:

Theorem (cf. Th 1.3 and Th 2.2 of [4]). If $\alpha: E_{m} \rightarrow Z\left[\operatorname{Gal}\left(Q\left(\zeta_{m}\right)^{+} / Q\right)\right]$ is any $\operatorname{Gal}\left(\boldsymbol{Q}\left(\zeta_{m}\right)^{+} / \boldsymbol{Q}\right)$-module map, then $4 \alpha\left(\mathcal{C}_{m}\right)$ annihilates the ideal class group of $\boldsymbol{Q}\left(\zeta_{m}\right)^{+}$.

When m is an odd prime p, our result (Th 3) gives a condition for $\alpha\left(\mathcal{C}_{m}\right)$ to be a "minimal" element that annihilates the ideal class group of $\boldsymbol{Q}\left(\zeta_{p}\right)^{+}$.

Let p be a fixed prime number and let $\mathcal{S}_{p}=\{l$; odd prime number such that $l \equiv \pm 1(\bmod p)\}, \mathcal{S}_{p}^{+}=\left\{l \in \mathcal{S}_{p} ; l \equiv 1(\bmod p)\right\}$. For any prime number l in \mathcal{S}_{p}, we denote by $\boldsymbol{Q}\left(\zeta_{p}, \zeta_{l}\right)^{++}$the composite field of $\boldsymbol{Q}\left(\zeta_{p}\right)^{+}$and $\boldsymbol{Q}\left(\zeta_{l}\right)^{+}$. We fix any prime ideal \mathfrak{l} of $\boldsymbol{Q}\left(\zeta_{p}\right)^{+}$above l and we write \tilde{I} for the prime ideal of $\boldsymbol{Q}\left(\zeta_{p}, \zeta_{l}\right)^{++}$abover. Also we fix any generator σ of $G=\operatorname{Gal}\left(\boldsymbol{Q}\left(\zeta_{p}, \zeta_{l}\right)^{++} / \boldsymbol{Q}\left(\zeta_{l}\right)^{+}\right)$. Let $E_{p}, E_{p, l}$ be the group of global units of $\boldsymbol{Q}\left(\zeta_{p}\right)^{+}, \boldsymbol{Q}\left(\zeta_{p}, \zeta_{1}\right)^{++}$respectively. We define $\mathcal{E}_{p}(l)=\left\{\eta \in E_{p, l} ; N_{Q\left(\zeta_{p}, \zeta_{l}\right)++/ \boldsymbol{Q}\left(\xi_{p}\right)+}(\eta)=1\right\}, \mathcal{C}_{p}(l)=\left\{\varepsilon \in E_{p} ; \exists \eta \in \mathcal{E}_{p}(l)\right.$ such that $\left.\varepsilon^{2} \equiv \eta\left(\bmod \prod_{j=0}^{(p-3) / 2} \check{\tau}^{(j)}\right)\right\}$. We call $\mathcal{C}_{p}(l)$ the pre-l-special unit group of $\boldsymbol{Q}\left(\zeta_{p}\right)^{+}$, and we define the special unit group of $\boldsymbol{Q}\left(\zeta_{p}\right)^{+}$by $\mathcal{C}_{p}=\left\{\varepsilon \in E_{p} ; \varepsilon \in \mathcal{C}_{p}(l)\right.$ for all but finitely many l in \mathcal{S}_{p} \} (see [4]).

We fix any sufficiently large integer M, and we put $\mathcal{S}_{p}^{(M)}=\left\{l \in \mathcal{S}_{p}^{+} ; l \equiv 1\right.$ $\left.\left(\bmod p^{M}\right)\right\}$. Let g_{p} be a primitive root modulo p such that $\sigma\left(\zeta_{p}\right)=\zeta_{p}^{g_{p}}$, and for $i=0, \cdots,(p-3) / 2$, let $\varepsilon_{i}=2 /(p-1) \sum_{j=0}^{(p-3) / 2} \omega^{-2 i}\left(g_{p}^{j}\right) \sigma^{j}$ be the idempotents in $Z / p^{M} Z[G]$, where ω is the Teichmüller character. Then $E_{p} / E_{p}^{p^{M}}=\oplus_{i=1}^{(p-3) / 2}$ $\varepsilon_{i}\left(E_{p} / E_{p}^{p^{M}}\right)$. For each $i=1, \cdots,(p-3) / 2$, we take any basis η_{i} of $\varepsilon_{i}\left(E_{p} / E_{p}^{p^{M}}\right)$ and let $\alpha: E_{p} / E_{p}^{p^{M}} \rightarrow \boldsymbol{Z} / p^{m} Z[G]$ be a G-module map such that $\alpha\left(\eta_{i}\right)=\varepsilon_{i}$. We sometimes use the following condition for l.

Condition-L. Let l be a prime number in $\mathcal{S}_{p}^{(M)}$. There is a G-module map

$$
\varphi:\left(\boldsymbol{Z}\left[\zeta_{p}\right]^{+} / / \boldsymbol{Z}\left[\zeta_{p}\right]^{+}\right)^{\times} \otimes \boldsymbol{Z} / p^{M} \boldsymbol{Z} \rightarrow \boldsymbol{Z} / p^{M} \boldsymbol{Z}[G]
$$

such that the following diagram is commutative:

Here, $\boldsymbol{Z}\left[\zeta_{p}\right]^{+}$is the integer ring of $\boldsymbol{Q}\left(\zeta_{p}\right)^{+}$and ψ is the reduction map.

Now for any prime number l in \mathcal{S}_{p}^{+}, let I_{l}, P_{l} be the fractional ideal group and the principal ideal group of $\boldsymbol{Q}\left(\zeta_{p}, \zeta_{l}\right)^{++}$respectively. We denote by $I_{p}^{(l)}$ the lift of the fractional ideal group of $\boldsymbol{Q}\left(\zeta_{p}\right)^{+}$into $\boldsymbol{Q}\left(\zeta_{p}, \zeta_{1}\right)^{++}$. Let \mathfrak{C}_{p} be the ideal class group of $\boldsymbol{Q}\left(\zeta_{p}\right)^{+}$, and we define the l-ideal class group $\mathfrak{C}_{p}^{(l)}$ of $\boldsymbol{Q}\left(\zeta_{p}, \zeta_{l}\right)^{++}$to be $\mathscr{C}_{p}^{(l)}=I_{l} /_{P_{l} I_{p}^{(l)}}$. We denoto by (\mathfrak{l}), ($\left.\mathfrak{l}\right)$, the ideal class, the l-ideal class of \mathfrak{l}, $\tilde{\mathfrak{L}}$ respectively. Let $\mathfrak{C}_{p}^{(l)}$ be the subgroup of $\mathfrak{C}_{p}^{(l)}$ generated by $\left\{\left(\tilde{l}^{\rho^{j}}\right)\right\}_{0 \leq j \leq(p-3) / 2}$. We put $A_{p}=\mathfrak{C}_{p} / p^{M\left(\mathfrak{C}_{p}\right.}, A_{p}^{(l)}=\mathfrak{C}_{p}^{(l)^{\prime}} / p^{M} \mathfrak{C}_{p}^{(l)^{\prime}}$, then $A_{p}=\oplus_{i=1}^{(p-3) / 2} \varepsilon_{i} A_{p}$, $A_{p}^{(l)}=\oplus_{i=1}^{(p-3) / 2} \varepsilon_{i} A_{p}^{(l)}$. We denote by [$]$, $[\tilde{\mathfrak{l}}]_{l}$ the projection of ($)$, $(\tilde{\mathfrak{l}})$, into A_{p}, $A_{p}^{(t)}$.

Let v_{p} be the p-adic valuation normalized by $v_{p}(p)=1$. For any subgroup H of E_{p}, we write $\left(E_{p} / H\right)_{p}=\left(E_{p} / H\right)_{p, M}$ for $\left(E_{p} / E_{p}^{p^{M}}\right) /\left(H / H \cap E_{p}^{p^{M}}\right)$.

Our main theorem states the following.
Theorem 1. For each $i=1, \cdots,(p-3) / 2$;
(i) If $l \in \mathcal{S}_{p}^{+}$, then

$$
v_{p}\left(\left|\varepsilon_{i}\left(E_{p} / \mathcal{C}_{p}(l)\right)_{p}\right|\right) \leq v_{p}\left(\operatorname{ord} \varepsilon_{i}[\tilde{\mathrm{C}}]_{l}\right)
$$

(ii) If $l \in \mathcal{S}_{p}^{(M)}$ then

$$
v_{p}\left(\operatorname{ord} \varepsilon_{i}[l]\right) \leq v_{p}\left(\operatorname{ord} \varepsilon_{i}[\tilde{l}]_{t}\right)
$$

(iii) If $l \in \mathcal{S}_{p}^{(M)}$ and l satisfies the Condition-L then

$$
v_{p}\left(\left|\varepsilon_{i}\left(E_{p} / \mathcal{C}_{p}(l)\right)_{p}\right|\right)=v_{p}\left(\operatorname{ord} \varepsilon_{i}[\tilde{\mathrm{l}}]_{l}\right) .
$$

From Th 1 (iii), we obtain a relation between the p-part of the index of the pre-l-special unit group and the order of the ideal class of $\tilde{\mathfrak{I}}$.

Next, using Th 1 , we shall discuss some relation between $\left(E_{p} / \mathcal{C}_{p}\right)_{p}$ and A_{p}. Let $m_{0}=m_{0}^{(i)}=\min \left\{m ; 0 \leq m \in \boldsymbol{Z}, p^{m} \varepsilon_{i} A_{p}=0\right\}$. Then from Rubin's Theorem above and the definition of α, we have $m_{0} \leq v_{p}\left(\left|\varepsilon_{i}\left(E_{p} / \mathcal{C}_{p}\right)_{p}\right|\right)$. Now, let $\mathcal{S}_{p}^{(M, \alpha)}=\left\{l \in \mathcal{S}_{p}^{(M)} ; l\right.$ satisfies the Condition-L $\}$ and $\operatorname{let} \mathcal{C}_{p}^{(M, a)}=\left\{\varepsilon \in E_{p} ; \varepsilon \in \mathcal{C}_{p}(l)\right.$ for all but finitely many l in $\left.\mathcal{S}_{p}^{(M, \alpha)}\right\}$, then clearly $\mathcal{C}_{p} \subset \mathcal{C}_{p}^{(M, \alpha)}$. It is not known whether $m_{0}=v_{p}\left(\left|\varepsilon_{i}\left(E_{p} / \mathcal{C}_{p}^{(M, \alpha)}\right)_{p}\right|\right)$, but we have the following.

Proposition 2. The inequality $m_{0} \leq v_{p}\left(\left|\varepsilon_{i}\left(E_{p} / \mathcal{C}_{p}^{(M, a)}\right)_{p}\right|\right)$ holds.
Particularly, if $\varepsilon_{i} A_{p}$ is cyclic then $m_{0}=v_{p}\left(\left|\varepsilon_{i}\left(E_{p} / \mathcal{C}_{p}^{(n, \alpha)}\right)_{p}\right|\right)$.
And we give the following condition for $m_{0}=v_{p}\left(\left|\varepsilon_{i}\left(E_{p} / \mathcal{C}_{p}^{(M, \alpha)}\right)_{p}\right|\right)$.
Theorem 3. The equality $m_{0}=v_{p}\left(\left|\varepsilon_{i}\left(E_{p} / \mathcal{C}_{p}^{(M, \alpha)}\right)_{p}\right|\right)$ holds if and only if there exists a prime number l satisfying
(i) $l \in \mathcal{S}_{p}^{(M, \alpha)}$
(ii) $\varepsilon_{i}\left(\mathcal{C}_{p}^{(M, \alpha)} / \mathcal{C}_{p}^{(M, \alpha)} \cap E_{p}^{p M}\right)=\varepsilon_{i}\left(\mathcal{C}_{p}(l) / \mathcal{C}_{p}(l) \cap E_{p}^{p}\right)$
(iii) $v_{p}\left(\operatorname{ord} \varepsilon_{i}[\check{[l]})=v_{p}\left(\operatorname{ord} \varepsilon_{i}[\check{\mathrm{l}}]_{t}\right)\right.$.

It is not known whether or not there exists an l satisfying (i)-(iii) of Th 3 in general. But we obtain the following.

Proposition 4. For each $i=1, \cdots,(p-3) / 2$, there are infinitely many rational primes l satisfying:
(i) $l \in \mathcal{S}_{p}^{(M, \alpha)}$
(ii) $\varepsilon_{i}\left(\mathcal{C}_{p}^{(M, \alpha)} / \mathcal{C}_{p}^{(M, \alpha)} \cap E_{p}^{p \mu}\right)=\varepsilon_{i}\left(\mathcal{C}_{p}(l) / \mathcal{C}_{p}(l) \cap E_{p}^{p \mu}\right)$.

It is not known whether or not $p \nmid\left[\mathcal{C}_{p}^{(M, \alpha)}: \mathcal{C}_{p}\right]$. If $v_{p}\left(\left|\varepsilon_{i}\left(\mathcal{C}_{p}^{(M, \alpha)} / \mathcal{C}_{p}\right)_{p}\right|\right)=0$ then from Th 3 we have $m_{0}=v_{p}\left(\left|\varepsilon_{i}\left(E_{p} / \mathcal{C}_{p}\right)_{p}\right|\right)$ if and only if there exists a prime number $/$ satisfying (i)-(iii) of Th 3.

References

[1] Kummer, E.: Über eine besondere Art, aus complexen Einheiten gebildeter Ausdrücke. J. Reine Angew. Math., 50, 212-232 (1855).
[2] Lang, S.: Cyclotomic Fields. Graduate Texts in Mathematics, Springer-Verlag, New York (1989).
[3] Mazur, B. and Wiles, A.: Class fields of abelian extensions of Q. Invent. Math., 76, 179-330 (1984).
[4] Rubin, K.: Global units and ideal class groups. ibid., 89, 511-526 (1987).
[5] Thaine, F.: On the ideal class groups of real abelian number fields. Ann. of Math., 128, 1-18 (1988).
[6] Washington, L. C.: Introduction to Cyclotomic Fields. Graduate Texts in Mathematics, Springer-Verlag, New York (1982).

