58 Proc. Japan Acad., 68, Ser. A (1992) [Vol. 68(A),
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(Communicated by Shokichi IYANAGA, M. J. A.,, March 12, 1992)

8§ 0. Introduction. In [3], Prof. T. Ono obtained interesting results
from a deformation of Dirichlet’s class number formula for real quadratic
fields Q(y p), where p is a prime number of the form p=4N-+1. In [2],
the author gave a similar deformation in the case where p is a prime
number of the form p=4N+38.

After the completion of [2], the author found that Dirichlet had al-
ready given a deformation of the class number formula for binary quad-
ratic forms ([1], § 107-§ 110 and § 138-§ 140), which is, however, somewhat
complicated. The purpose of this note is to give a more simple formula
for any real quadratic field using the same methods as [2] and [38]. To be
more precise, let m be a square-free positive integer, ¢ the fundamental
unit >1 of the real quadratic field Q(,/m) and h the class number of Q(y/m).
We denote by d the discriminant of Q(y/m). The discriminant d is written
in the form d=P (=1mod 4), 4P or 8P, where P=1 or P=p,p,- - - p,(D,, P2,
-+, p, are distinct odd prime numbers). ¢ denotes a primitive dth root
of unity. Let X be a Kronecker character belonging to Q(y/m), and L(s, X)
the corresponding L-series. As usual, we denote by ¢ the Euler function,
and by g the Mobius function. For the sake of simplicity, we denote
#(d)/4 by v. For any integer 1<t<v, define z, by putting

t,=((¢(d) /$(d/n)) - (d/n)—X@E) d)/2, where n=(t, d).
We also define W as follows
W= {O, if d has at least two distinct prime factors,
1, otherwise.
Then our main theorem reads.
Theorem. With the above notations, we have

Vet =25 d, 1 d,.
j=0
Here d; are determined by the following recurrence relation.
j .
jdj:; ad;,., (dy=1,1=5=50),

where a,= —r,.
8§ 1. Dirichlet’s formula. It is known that (cf. [4])
_ __logé ()]
he=LQ1,%), where xk=—2-- and LQA,0)=>
v d =)
and > , 2N =x(n)y d  (the Gauss sum).

7 mod
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Therefore
log et =3 L ( ( 3 109
n=1 Y, r modd
d-1 o d~1
Tz_;o xX(r) 2 grr=— ;;ox(r) log 1—-¢N).

Then we consider two sets of 1ntegers
A={aeZ;1<a<d—-1, X(a)=+1}, B={beZ;1<b<d—1,xb)=—1},
and put

A(x)= al;[A A—2g), B(x) =bQB (1—28).
It is easy to see

(1) #"=B(1)/AQ).
@, (x) denotes the nth cyclotonic polynomial, that is,
D, (x)= 11 (®x—¢i), where ¢, is a primitive nth root of unity.

0<i<n, (T,m) =1
Then it is well-known that
0,@)=T] @—1r,

2ln

and one can easily show that

(2) 0,(1)=AMB1)=m" (cf. [5]).
From (1) and (2), one gets
(3) vV m¥ et =B(1).

For the proof of our theorem, we have to determine the coefficients of
B(x).

Lemma 1 (Newton’s formula, cf. [1] §139, [3] §2). For any complex
numbers a, 1<i1< M), we put

Fi)=1] 1—ta)=3" bt'.
i=1 7=0

Then
b,= F”.)'(O) , and jb,=—3b,S, A<j<M), where St=ﬁ ;.
7 t=1 i=1
Put A@=3ca', B@=3 da’.
j=0 j=0

Applying Lemma 1 to polynomials A(x), B(x), we get
jc,:—i} ¢;-.0,, Where ¢g,= Z g, (i 20),
t=1

jd;=—3"d, 7, where t,= S A=is20).
t=1
Lemma 2. A(x), B(x) are reciprocal polynomials, i.e.,
Oy =0y, byu=D0g_u, 0=Su20 (cf. [1]).
Then, from Lemmas 1-2 and the equation (3) one gets
J— U v—-1
(4) VT =B =3 d, =25 d,+d,.
j=0 7=0

Thus, to finish the proof of our theorem, we have only to determine the
values of z,.

8§ 2. The determination of z,. Next lemma is easily shown by the
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Mobius’s inversicn formula (cf. [4] § 9, problem 2).
Lemma 3. Let f(n) be the sum of all the roots of @,(x)=0, then f(n)
=p(n).
In the following we consider two cases (i) (¢, d)=1 and (ii) (¢, d)=+1.
(i) By Lemma 3, we get
ot+r= 2, F=f(d=ud).

xE€(Z/dZ)*

On the other hand, it is easy to see that
oo—1,= Y. X=Xt d (the Gauss sum).

XE(Z[AZ)*
Hence, we have

(5) 7, =(u(d) — X)W d) /2.

(ii) Inthis case, it is easy to see g,—z,=X(t)v/ d =0. We put n=(¢, d).
Then ("¢ and ¢{"* are primitive (d/n)th roots of unity, each of which
appears ¢(d)/¢(d/n) times. Then, by Lemma 3 we see that

o+ 7= (@) | $(d/n)) - p(d /).
Hence one gets
(6) . =(¢(d)/p(d/n)) - u(d/n) /2.
By unifying (5) and (6), we have
=) /§(d/n) - p(d /1) — X)W @) /2.
Hence we have shown our main theorem in § 0.

§ 3. Some illustrations. (1) The case d=33 (m=33). Then one
has ¢(33)=20, v=5, W=0.

Put w=(1+«/§3)/2, then o*=w-+8.

For t=1 to 5, X(t), «, and d, are as follows.

t 0 1 2 3 4 5
x(t) +1 +1 0 +1 —1
a, w—1 w—1 1 w—1 —w
d, 1 w—1 4 w+2 2w 7

Hence ¢"=2(d,+d,+d,+d;+d,) +d, =23 +44/33.
On the other hand, e=23+44/33. Hence h=1.
(2) The case d=60 (m=15). Then one has ¢ (60)=16, v=4, W=0.
Put w=4+/15, then x(t), «, and d, are as follows.

t 0 1 2 3 4
(@) +1 0 0 0
a, ) 1 0 -1
d, 1 1) 8 3w 13

Hence &*=2(d,+d,+d,+d,) +d,=31+8y/15.
On the other hand, e=4-+4+/15. Hence h=2.
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(3) The case d=8 (m=2). Then one has ¢(8)=4, v=1, W=1, a,=
V2, and d,=+2. Hence v/ 2¢*=2++2. On the other hand e=1+4+2.
Hence h=1.
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