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1. Introduction. Let x=(x,, %, ---,,) be a vector in R* and D a
region contained in R". Let f,(x) 1<i<mn) be real-valued nonlinear func-
tions defined on D and f(x)=(f(x), fo(x), ---, f.(x)) an n-dimensional
vector-valued function. Then we shall consider a system of nonlinear
equations
(1.1) r=f(2),
whose solution is z.

As mentioned in [2]-[4], Henrici [1, p. 116] has considered a formula,
which is called the Aitken-Steffensen formula. Now, we have studied the
above Aitken-Steffensen formula for systems of nonlinear equations in
[2]-[4], and shown [2, Theorem 2], [3, Theorem 2] and [4, Theorem 1].

The purpose of this paper is to show Theorem 4 by combining [2,
Theorem 2] with [2, Theorem 1], and Theorem 5 by using only the relation
in [4, Theorem 1].

2. Statement of results. For any ze R™ and an #Xn matrix A=
(a;;), we shall use the norms ||z| and ||A4| defined by

l||| =max lz;| and [|A] ={2g§|ai,l,

respectively. Let U(x)={x; |x—z|<d}CD be a neighbourhood.
Given #©® ¢ R", define 2 ¢ R" (t=1,2, - --) by

(2.1) 28 = f(x®) (1=0,1,2,--.).
Put
2.2 AV =3 — % for i=0,1,2, ...,
and then define an n X7 matrix D, by

Dk:(d(k), d(k+l), ceey, d(k+n—1)).

Throughout this paper, we shall assume the same conditions (A.1)-
(A.5) as in [2].

(A1) fi(x) A<i<n) are two times continuously differentiable on D.

(A.2) There exists a point z € D satisfying (1.1).

(A.3) [[J@)|<1, where J(x)=(af(x) [0x;) (A1=<4, F<n).

(A.4) The vectors d*®, d*", ... d¥+"*-b [k=0,1,2, ..., are linearly
independent.

(A.5) inf{det D,|/||d®]|"}>0.

Then, we shall consider the Aitken-Steffensen formula
(2'3) y(k)=x(k)_AX(k)(AZX(k))—le(k) (k=0, 1, 2, .. .)’
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where an n-dimensional vector 4x®, and »Xn matrices 4X® and 42X®
are given by

(2.4) Ax® = g+ _ gt

(2.5) AX(’“r:(x("“)——:)c("), cee x(k+n)_x(k+n—l))
and

(2.6) A2X® = AX *+D _ g X B

Now, we have shown the following Theorems 1 and 2 in [2], and The-
orem 3 in [4].

Theorem 1 ([2, Theorem 11). Under conditions (A.1)-(A.3), we have
2.7 lo®*D —z| <M ||l —z| ((*=0,1,2,...)
for any x® e U(x) and a constant M, with ||J(®)||<M,<1.

Theorem 2 ([2, Theorem 2]). Under conditions (A.1)-(A.5), for x® ¢
U(z), there exists a constant M, such that the property
2.8) [y —z| < M,|z® —z|?
holds for sufficiently large k.

Theorem 3 ([4, Theorem 1]). Under conditions (A.1)-(A.5), for x*® ¢
U®®@), a new relation of the form
(2.9) ly“ P —z| = Mly® —3| +e, &—0 (k—o0)
holds with a constant M satisfying ||J(®)|| <M <1, where ¢, can be consid-
ered as “convergent term”.

In this paper, we show the following results.

Theorem 4. Under conditions (A.1)-(A.5), for 2 ¢ U(x), Theorem 2,
together with Theorem 1, implies

YP—>% as k—>oo.

Theorem 5. Under conditions (A.1)-(A.5), for x® ¢ U(x), Theorem 3

implies
Yy -z as k—oo.

As seen above, the result of Theorem 4 is the same as that of Theo-
rem 5, but we show Theorem 4 by combining (2.8) in Theorem 2 with (2.7)
in Theorem 1, and Theorem 5 by using only the relation (2.9) in Theorem
3.

3. Preliminaries. By (2.2) and (2.4), we have
3.1 Ax® =&+ — g®
and, by (2.1), (2.2) and (A.2),

3.2) a* D =J(@)d™® 4 &(x®),

&(x™) being an n-dimensional vector, and by (A.1),

(3.3) &@®) | <L) d®|*  for a%® e U®),

a constant L, being suitably chosen. Then, from (3.1) by using (3.2), (3.3)
and (A.3), we see that the inequality

3.4 | 4z < Ly|| ||

holds with a constant L, chosen suitably.

For the proof of Theorem 5, we need the following lemma given in
[2].

Lemma 1 ([2, Lemma 4]). Under conditions (A.1)-(A.5), for x™® e
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U@), the nxn matriz 42X given by (2.6) is invertible, and there exists a
constant L, such that the inequality
(3.5) (LX) S Ly dP|| -
holds for sufficiently large k.

By (3.2), we have

d(k+i)_d(lc+i—1) =(J(27/')—I)d(k+i_l) +$(x(lc+t—l))’

so that
(3.6) AX“ =(J(@)— DD+ (&x®), - - -, &(x®+m-1))
follows from (2.5).

We note that [2, Theorem 1] leads to

n—1

(3.7) ||Dk||§z ||d(k+t)”é’n”d(k)”.
=0

Since

1@, -, s3] e ),

we have, by (3.3) and [2, Theorem 1],
(3.8 1E@®), -, g@® )| <LJd®|*  for x® e U(x),
a constant L, being suitably chosen. Then using ||[||=1, there exists a
constant L, such that the inequality
3.9) [4X® || < Lyf d||
holds for #*® e U(z), from (3.6), by (A.3), (3.7) and (3.8).

4. Proofs of Theorems 4 and 5. We shall prove Theorems 4 and 5.

Proof of Theorem 4. By repeating the process (2.7) in Theorem 1,
we have

®—z|| < Mf|la®—x|
for any «® € U(%), and so combined with (2.8) in Theorem 2, we obtain
ly®—z| < M,M*|2® —%|>>0 as k—oo,

since |J(x)||<M,<1. This proves the theorem.

Proof of Theorem 5. We recall that (3.5) in Lemma 1 holds, provided
that k is sufficiently large. Now, (2.3) gives
(4.1) [y® =z <[ @] 4[| AX P [|(LX )| [| dw®).
Then by (4.1) with (3.4), (3.5) and (38.9), for #® e U(x), there exists a con-
stant K,>0 such that
(4.2) |y —z|| <A+ L,L,Ly)6
holds for any integer k> K,.

Since ¢,—0 (k—o0) in (2.9), it follows that for an arbitrary but fixed
>0, there exists a constant K,>0 such that
(4.3) 0<e,<e
for any integer k>K,. So putting N=max (K,, K,), we have (4.2) and
(4.3) for k>N.

By repeating the process (2.9) in Theorem 3, we obtain
~N-1

4.4) lly"“”—fliéM““”lly‘””’—ﬂ’CH+k2. Me, s,
=0
and, from (4.4), by (4.2) and (4.3),
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4.5) |y %+ — 7| < M ¥(1+ L,L,L)5+ i ¢ T

for k>N.

As M was chosen so as to satisfy |J(z)||<M<1, we see that there
exists a constant K >N such that
4.6) ME-N<¢
for k> K. Therefore, for 2 ¢ U(x),

(k+1) __ = 1 ]
Iy =zl <[ A+ LLLyo+ - |e

follows from (4.5) by using (4.6), provided £>K. This proves our Theo-
rem 5. In this way, we have proved Theorems 4 and 5, as desired.

Remark 1. We note that, for 2® e U(x),

[dz®|| < (M, +1D)||d |

holds from (3.1), by Theorem 1. So we can take M,+1 as L, in (3.4).

The author would like to express his hearty thanks to H. Mine, Pro-
fessor Emeritus of Kyoto University, for many valuable suggestions.

References

[1] P. Henrici: Elements of Numerical Analysis. John Wiley, New York (1964).

[2] T. Noda: The Aitken-Steffensen formula for systems of nonlinear equations.
Stigaku, 33, 369-372 (1981) (in Japanese).

[8] ——: The Aitken-Steffensen formula for systems of nonlinear equations. II. ibid.,
38, 83-85 (1986) (in Japanese).

The Aitken-Steffensen formula for systems of nonlinear equations. III.

Proc. Japan Acad., 62A, 174-177 (1986).

[4]




