84. Remarks to our Former Paper, "Uniform Distribution of Some Special Sequences"

By Kazuo Goto*) and Takeshi Kano**)
(Communicated by Shokichi IYANAGA, M. J. A., Dec. 14, 1992)

Abstract

In [2], Y. H. Too pointed out that our proof of Theorem 2 of our former paper [1] contained an error. In this paper, we shall first restate the main results of [1], [2] as Theorems A, B, C, then give a revised proof of Theorem B (= Theorem 2 [1]), prove a Proposition which, combined with Theorem A ($=$ Theorem 1 [1] which was correctly proved), yields Theorem C and finally remark that Theorem B can also be easily deduced from Theorem A.

Let p_{n} be the n-th prime number.
Theorem A (Theorem 1 [1]). Let $f(x)$ be a continuously differentiable function with $f(x) \rightarrow \infty(x \rightarrow \infty)$. If $f^{\prime}(x) \log x$ is monotone, $n\left|f^{\prime}(n)\right| \rightarrow \infty$ as $n \rightarrow \infty$, and

$$
f(n) /(\log n)^{l} \rightarrow 0 \quad(n \rightarrow \infty) \text { for some } l>1,
$$

then $\left(\alpha f\left(p_{n}\right)\right)$ is uniformly distributed mod 1 , where $\alpha(\neq 0)$ is any real constant.

Theorem B (Theorem 2 [1]). Let $f(x)$ be a continuously differentiable function with $f^{\prime}(t)>0$ and $f^{\prime \prime}(t)>0$. If $t^{2} f^{\prime \prime}(t) \rightarrow \infty$ as $t \rightarrow \infty$ and

$$
f(n) /(\log n)^{l} \rightarrow 0 \quad(n \rightarrow \infty) \quad \text { for some } l>1
$$

then $\left(\alpha f\left(p_{n}\right)\right)$ is uniformly distributed $\bmod 1$, where $\alpha(\neq 0)$ is any real constant.

Theorem C (Theorem 3 [2]). Let f be a twice differentiable function with $f \rightarrow \infty, f^{\prime}>0$ and $f^{\prime \prime}<0$. If $x^{2}\left(-f^{\prime \prime}(x)\right) \rightarrow \infty,(\log x)^{2}\left(-f^{\prime \prime}(x)\right)$ is decreasing as $x \rightarrow \infty$ and $f(n) /(\log n)^{l} \rightarrow 0(n \rightarrow \infty)$ for some $l>1$, then $\left(\alpha f\left(p_{n}\right)\right)_{1}^{\infty}$ is uniformly distributed $\bmod 1$, where $\alpha(\neq 0)$ is any real constant.

Revised proof of Theorem B. The proof becomes correct if we change the estimation of I_{2} in [1: p. 84 line $6 \uparrow$ through p. 85 line 3] as follows:

We choose any sequence $c_{N} \rightarrow \infty$ as $N \rightarrow \infty$, and put

$$
I_{2}=\int_{2}^{p_{N}} \frac{e^{2 \pi i h f(t)}}{\log t} d t=\left(\int_{2}^{c_{N}}+\int_{c_{N}}^{p_{N}}\right) \frac{e^{2 \pi i h f(t)}}{\log t} d t=A+B, \text { say }
$$

Then clearly

$$
|A|=\left|\int_{2}^{c_{N}} \frac{e^{2 \pi i n f(t)}}{\log t} d t\right| \leq \int_{2}^{c_{N}} \frac{d t}{\log t} \ll \frac{c_{N}}{\log c_{N}}
$$

Now applying [3:Lemma 10.2], we get

[^0]\[

$$
\begin{aligned}
& |B|=\left|\int_{c_{N}}^{p_{N}} \frac{e^{2 \pi i h f(t)}}{\log t} d t\right| \ll \max _{c_{N} \leq t \leq p_{N}} \frac{1}{\log t \sqrt{h\left|f^{\prime \prime}(t)\right|}} \\
& \quad=\frac{1}{\sqrt{h}} \max _{c_{N} \leq t \leq p_{N}} \frac{t}{\log t} \frac{1}{\sqrt{t^{2}\left|f^{\prime \prime}(t)\right|}} \\
& \ll \frac{1}{\sqrt{h}} \frac{p_{N}}{\log p_{N}} \max _{c_{N} \leq t \leq p_{N}} \frac{1}{\sqrt{t^{2}\left|f^{\prime \prime}(t)\right|}}=\frac{N}{\sqrt{h}} o(1),
\end{aligned}
$$
\]

since $p_{N} \sim N \log N$ and $c_{N} \rightarrow \infty$ as $N \rightarrow \infty$.
Thus by the Erdös-Turán inequality for the discrepancy D_{N} of $f\left(p_{N}\right)$ we have

$$
\begin{aligned}
& D_{N} \ll \frac{1}{m}+\sum_{h=1}^{m} \frac{1}{h}\left|\frac{1}{N}\left(\frac{p_{N}}{\left(\log p_{N}\right)^{k}}+\frac{c_{N}}{\log c_{N}}+\frac{N}{\sqrt{h}} o(1)+\frac{h p_{N}}{\left(\log p_{N}\right)^{k}} f\left(p_{N}\right)\right)\right| \\
& \ll \frac{1}{m}+\frac{p_{N}}{N\left(\log p_{N}\right)^{k}} \log m+\frac{c_{N}}{N \log c_{N}} \log m+\sum_{h=1}^{m} \frac{1}{h \sqrt{h}} o(1)
\end{aligned}
$$

$$
+\frac{p_{N}}{N\left(\log p_{N}\right)^{k}} f\left(p_{N}\right) m
$$

Choosing $m=\log N$ and $c_{N}=\sqrt{N}$, we have $D_{N}=o(1)$, which proves Theorem B.

Proposition (see, Theorem 3 [2]). Let $f(x)$ be a twice differentiable function with $f^{\prime}>0$ and $f^{\prime \prime}<0$. If $x^{2}\left(-f^{\prime \prime}(x)\right) \rightarrow \infty$, then $x f^{\prime}(x) \rightarrow \infty$. If $x(\log x)^{2}\left(-f^{\prime \prime}(x)\right)$ is decreasing, then $(\log x) f^{\prime}(x)$ is monotone. Moreover $(\log x) f^{\prime}(x)$ is decreasing or increasing according as $f^{\prime}(x)$ tends to zero or to a positive constant.

Proof. Since $f^{\prime \prime}<0$ and $f^{\prime}>0$, in case $f^{\prime}(x) \rightarrow m>0$, we have $x f^{\prime}(x) \rightarrow \infty$. Otherwise by L'Hospital's rule, we have $x f^{\prime}(x) \rightarrow \infty$.

Next, we set $M(x)=x(\log x)^{2}\left(-f^{\prime \prime}(x)\right)>0$. Since $M(x)$ is decreasing and bounded from below, we have $\lim _{x \rightarrow \infty} M(x)=M$. For any positive ε, there exists c such that for any $x>c, M \leq M(x)<M+\varepsilon$. Now
(*)

$$
\begin{gathered}
-f^{\prime \prime}(x)=\frac{M(x)}{x(\log x)^{2}} \\
-f^{\prime}(x)=\int_{c}^{x} \frac{M(t)}{t(\log t)^{2}} d t-f^{\prime}(c)
\end{gathered}
$$

Therefore

$$
T(x):=(\log x) f^{\prime}(x)=-(\log x) \int_{c}^{x} \frac{M(t)}{t(\log t)^{2}} d t+(\log x) f^{\prime}(c)
$$

Thus

$$
\begin{aligned}
T^{\prime}(x)=-\frac{1}{x} \int_{c}^{x} \frac{M(t)}{t(\log t)^{2}} d t-\frac{M(x)}{x(\log x)}+\frac{f^{\prime}(c)}{x} \geq & -\frac{1}{x} \int_{c}^{x} \frac{M+\varepsilon}{t(\log t)^{2}} d t \\
& -\frac{M+\varepsilon}{x(\log x)}+\frac{f^{\prime}(c)}{x}
\end{aligned}
$$

$$
\begin{array}{r}
=-\frac{M+\varepsilon}{x}\left(\frac{1}{\log c}-\frac{1}{\log x}\right)-\frac{M+\varepsilon}{x(\log x)}+\frac{f^{\prime}(c)}{x}=-\frac{1}{x} \frac{M+\varepsilon}{\log c}+\frac{f^{\prime}(c)}{x} \\
=\frac{1}{x}\left(f^{\prime}(c)-\frac{M+\varepsilon}{\log c}\right)>0
\end{array}
$$

if $\lim _{x \rightarrow \infty} f^{\prime}(x)=m>0$ and c being sufficiently large.
If $m=0$, then from (*),

$$
f^{\prime}(c)=\int_{c}^{\infty} \frac{M(t)}{t(\log t)^{2}} d t
$$

and

$$
T(x)=(\log x) \int_{x}^{\infty} \frac{M(t)}{t(\log t)^{2}} d t
$$

Thus

$$
\begin{gathered}
T^{\prime}(x)=\frac{1}{x} \int_{x}^{\infty} \frac{M(t)}{t(\log t)^{2}} d t-\frac{M(x)}{x} \frac{1}{\log x} \\
=\frac{1}{x} \int_{x}^{\infty} \frac{M(t)}{t(\log t)^{2}} d t-\frac{M(x)}{x} \int_{x}^{\infty} \frac{d t}{t(\log t)^{2}}=\frac{1}{x} \int_{x}^{\infty} \frac{M(t)-M(x)}{t(\log t)^{2}} d t \leq 0,
\end{gathered}
$$

since $M(x)$ is monotonely decreasing. This completes the proof.
Remark 1. From this Proposition, we can obtain Theorem C from Theorem A.

Remark 2. Our Theorem 2 [1] can be also deduced from our Theorem 1 [1] as follows:

If $t^{2} f^{\prime \prime}(t) \rightarrow \infty$, then we have $f(t) \rightarrow \infty$ as $t \rightarrow \infty$. Since $f^{\prime \prime}(t)>0$, $f^{\prime}(t)$ is monotonely increasing. As $\log x$ is also monotonely increasing, $f^{\prime}(x)$ $\log x$ is monotonely increasing. Hence we have $n\left|f^{\prime}(n)\right| \rightarrow \infty$ as $n \rightarrow \infty$, because $f^{\prime}(x)$ is monotonely increasing and $f^{\prime}(t)>0$.

References

[1] K. Goto and T. Kano: Uniform distribution of some special sequences. Proc. Japan Acad., 61A, 83-86 (1985).
[2] Y. H. Too: On the uniform distribution modulo one of some log-like sequences. ibid., 68A, 269-272 (1992).
[3] A. Zygmund: Trigonometric Series. vol.1, Cambridge, 1959.

[^0]: *) Department of Mathematics, Faculty of Education, Tottori University.
 **) Department of Mathematics, Faculty of Science, Okayama University.

