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Remarks to our Former Paper, "Uniform Distribution

of Some Special Sequences"

By Kazuo GOTO *) and Takeshi KANO **)

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 14, 1992)

Abstract: In [2], Y. H. Too pointed out that our proof of Theorem 2 of

our former paper’ [1] contained an error. In this paper, we shall first restate

the main results of [1], [2] as Theorems A, B, C, then give a revised proof of

Theorem B (--Theorem 2 [1]), prove a Proposition which, combined with

Theorem A (-- Theorem 1 [1] which was correctly proved), yields Theorem

C and finally remark that Theorem B can also be easily deduced from

Theorem A.

Let Pn be the n-th prime number.
Theorem A (Theorem 1 [1]). Let f (x) be a continuously differentiable

function with f (z) -- co (z-- co). If f’(x) log z is monotone, n f’(n)[-- co

as n-- co, and

f (n)/(log n) -- 0 (n -- co) for some l > 1,
then (of (Pn)) is uniformly distributed mod 1, where x( 4: O) is any real con-
stant.

Theorem B (Theorem 2 [1]). Let f (x) be a continuously differentiable
fu.nction with f’ (t) > 0 and f" (t) > O. If tf" (t) -- c as t--* oo and

f (n)/(log n) -- 0 (n -- co) for some > 1,
then (of (Pn)) is uniformly distributed mod 1, where c( :/: O) is any real con-
stant.

Theorem C (Theorem 3 [2]). Let f be a twice differentiable function with

f-- co, f’ > 0 and f" < O. If zZ(- f"(z)) --* co, (log z)(- f"(z)) is

decreasing as x -- co and f (n)/( log n) O(n-- co ) for some l > 1, then
(xf (Pn) is uniformly distributed mod 1, where o (4: O) is any real constant.

Revised proof of Theorem B. The proof becomes correct if we change the
estimation of 12 in [1:p.84 line 6 T through p.85 line 3] as follows:

We choose any sequence c--* co as N--* co, and put

f2
#2v2rcihf(t) (f22cNI e_____ t=log t

Then clearly
2ihf(t)

[A] elog t

2ihf(t)

f) e
gt dt=A+B say.+ ’o"

f2 c dt << cadt <- log t log c2v

Now applying [3 Lemma 10.2], we get
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log------/-dt << max
log t v/hlf "(tcv P
1 t 1

max
logt]tlf (t)ctp

p 1 N
maxlog

since pn N log N and CN---’ oo as N---’ co.
Thus by the Erd0s-Turfin inequality for the discrepancy DN of f(PN)

we have

DN<< 1__m 4-= - (lOgpN)
qv+N hPv )[log CN - o(1) +

(log pN) k fN)

1__ + PN log m + cu
m N (log Pv) N log CN

’ 1log m + 2 h(-o(1)
+ PN f(PN)m
N (log PN) k

Choosing m--logN and CN= , we have DN= 0(1), which proves
Theorem B.

Proposition (see, Theorem 3 [2]). Let f (x) be a twice differentiable func-
tion with f’ > 0 and f" < O. If xe(--f"(x)) -- co, then x f’(x) -- oo. If
x ( log x) ( f,, (x)) is decreasing, then (log x)f" (x) is monotone. Moreover
(log x)f’(x) is decreasing or increasing according as f’(x) tends to zero or to
a positive constant.

Proof Since f" < 0 and f’ > O, in case f’(x)--*m > O, we have
xf’(x) -- oz. Otherwise by L’Hospital’s rule, we have xf’(x) -- oo.

Next, we set M(x) x(logx)e( f"(x)) > O. Since M(x) is
decreasing and bounded from below, we have limx_.oM(x)= M. For any
positive s, there exists c such that for any x> c, M_ M(x) < M+ s.
Now

--f"(z) M (x)
x (log x)

(*) --f’(x) f M(t) dt- f’(c)
t (log t)

Therefore

(x) "= (logx)f’(x) (logx) r’jc
x M (t)T

t (log t)
Thus

dt 4- (log x)f’(c).

M (x)T’(x) 1 M(t) dt-x t (log t) x (log x)
+f’(c) > _l f

x M+ s
x x t (log t)

dt

M+ s +f’(c)
x (log x) x
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M+a( 1 1 ) M+s f’(c) 1M+s +f’(c)
x logc logx x(logx) x x logc x

-Ir/’(c)
xv

if lim f’(x) m 0 and c being sufficiently large.
X.-

If m O, then from (),

f (c) f M (t) dt
t (log t)

and

T(x) (logx) f M(t)
t (log t)

dr.

1 fxx M(t) dt- M(x) 1T’ (x) - t (log t) x log x

Thus

log c

1 [’ M(t) dt-- M(x____) [’ dt 1 [’M(t)--M_._(x) dt<O
X dx t (log t) x dx t (log t) X dx t (log t)

since M (x) is monotonely decreasing. This completes the proof.
Remark 1. From this Proposition, we can obtain Theorem C from

Theorem A.
Remark 2. Our Theorem 2 [1] can be also deduced from our Theorem

1 [1] as follows
If t2f"(t)--* co, then we have f(t)- co as t -- co. Since f"(t) > O,

f’(t) is monotonely increasing. As log x is also monotonely increasing, f’(x)
logx is monotonely increasing. Hence we have n If’(n) -- co as n---* co,
because f’(x) is monotonely increasing and f’(t) O.
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