On the Regularity of Prehomogeneous Vector Spaces 82.

By Akihiko GYOJA

Institute of Mathematics, Yoshida College, Kyoto University (Communicated by Shokichi IYANAGA, M. J. A., Dec. 14, 1992)

Introduction. 0.1. Let G be a complex linear algebraic group, and $V (\neq 0)$ a complex vector space on which G acts via a rational representation. Let V^{\vee} denote the dual space of V, on which G acts naturally.

0.2. If V has an open G-orbit, then (G, V) is called a *prehomogeneous* vector space. A prehomogeneous vector space (G, V) is called regular if there exists a (non-zero) relatively invariant polynomial function $f(x) = f(x_1, \dots, x_n)$ (x_n) on V such that

(0.3)
$$\det\left(\frac{\partial^2 \log f}{\partial x_i \partial x_j}\right) \neq 0.$$

Let (G, V) be a regular prehomogeneous vector space, and take f so that (0.3) holds. Then the following assertions hold [5, §2].

(0.4) (G, V^{\vee}) is also prehomogeneous.

(Moreover (G, V^{\vee}). is regular.)

(Moreover (G, V)). Is regular.) (0.5) Let O (resp. O^{\vee}) be the open G-orbit in V (resp. V^{\vee}). Then $O \cong O^{\vee}$. (0.6) Let $V \setminus O = (\bigcup_{i=1}^{l} S_i) \cup (\bigcup_{j=1}^{m} T_j)$ (resp. $V^{\vee} \setminus O^{\vee} = (\bigcup_{i=1}^{l'} S_i^{\vee}) \cup (\bigcup_{j=1}^{m'} T_j^{\vee})$) be the irreducible decomposition, where the codimension of S_i and S_i^{\vee} (resp. T_j and T_j^{\vee}) are one (resp. greater than one). Then l = l'.

Continue to assume (G, V) regular and prehomogeneous. Bearing (0.5)in mind, H. Yoshida posed the following problem.

Problem 1. $V \setminus O \simeq V^{\vee} \setminus O^{\vee}$?

Bearing (0.6) in mind, let us also consider the following problem.

Problem 2. For any integer c > 1, card $\{j \mid \text{codim } T_j = c\} = \text{card}$ $\{j \mid \text{codim } T_i^{\vee} = c\}$?

We shall settle Problem 1 negatively in §1, and Problem 2 affirmatively in §2.

Convention. If no explanation is given, a lowercase letter should be understood as an element of the set denoted by the same uppercase letter. We define the Bruhat order of a Coxeter group so that the identity element is minimal. We denote the complex number field by C, and the rational integer ring by \mathbf{Z} .

§1. 1.1. The following argument will be used. Let Z be a complex algebraic variety. We may assume that Z is defined over a field which is finitely generated over the rational number field. Then we can consider its specialization at enough general primes. Especially we obtain a variety over a finite field whenever the characteristic p and the cardinality q of the field are large enough. Let |Z| = |Z|(q) be the cardinality of the rational points of the variety obtained above. We understand that |Z| is a function of q, and defined if p and q are large enough. We write |Z| = |Z'| etc., if equality holds for large p and q. If $Z \simeq Z'$, then |Z| = |Z'|.

1.2. Now we take up again the prehomogeneous vector space studied in [2]. Let $V = V^{\vee} = M_n$ be the totality of $n \times n$ -matrices. Define the $GL_n \times I$ GL_n -action on V (resp. V^{\vee}) by $(g_1, g_2) \cdot v = g_1 v g_2^{-1}$ (resp. $(g_1, g_2) \cdot v^{\vee} = g_2 v^{\vee} g_1^{-1}$) for $g_i \in GL_n$. We consider $(GL_n \times GL_n, V^{\vee})$ as the dual of $(GL_n \times GL_n, V)$ by the pairing $\langle v^{\vee}, v \rangle = \operatorname{trace}(v^{\vee}v)$. Let W be the totality of permutation matrices in GL_n , which we identify with the symmetric group. Let s_i be the transposition (i, i + 1) and $S = \{s_1, \ldots, s_{n-1}\}$. For $I \subseteq S$, let W_I be the subgroup of W generated by I, w_I the longest element of W_I , and $I' := w_S I w_S$. (The pair (W, S) is a Coxeter system. For its generality, we refer to [1, Chapter 4].) Put $P_I = BW_I B$ (the standard parabolic subgroup of type I). For $x = (x_{ij}) \in M_n$, put $f_k(x) = \det(x_{n-k+i,j})_{1 \le i,j \le k}$. Then $f_k^{-1}(0)$ $=\overline{Bw_{s}s_{k}B}$, where the (Zariski) closure is taken in M_{n} .

1.3. Let us consider the prehomogeneous vector space $(P_{I'} \times P_{J}, V)$ and its dual $(P_{I'} \times P_{J}, V^{\vee})$, which are regular since f_n satisfies (0.3). Let O (resp. O^{\vee}) be the open orbit in V (resp. V^{\vee}). Then $O = P_{I'} w_s P_I =$ $Bw_{s}W_{I}W_{I}B$ and $O^{\vee} = BW_{I}W_{I}w_{s}B$ (cf. [1, no.2.1, Lemma 1]). Let X be the set of minimal elements of $W \setminus W_I W_J$ with respect to the Bruhat order. Then the irreducible components of $V \setminus O$ (resp. $V^{\vee} \setminus O^{\vee}$) are $\{f_n^{-1}(0), \overline{Bw_s xB}\}$ $(x \in X)$ (resp. $\{f_n^{-1}(0), \overline{Bx^{-1}w_sB} \ (x \in X)\}$).

Lemma 1.4. $f_k^{-1}(0) \neq f_l^{-1}(0)$ unless k = l. *Proof.* Use (1.1), noting $|M_n| - |f_k^{-1}(0)| = |M_n \setminus f_k^{-1}(0)| = q^{n^2 - k^2}$ $\prod_{i=0}^{k-\nu} (q^k - q^i).$

Example 1.5. Let $I = J = S \setminus \{s_k\}$. Then $X = \{s_k\}$, and hence $\overline{Bw_s s_k B}$ = $f_k^{-1}(0)$ (resp. $\overline{Bs_k w_s B} = \overline{Bw_s s_{n-k} B} = f_{n-k}^{-1}(0)$ and $f_n^{-1}(0)$ are the irreducible components of $V \setminus O$ (resp. $V^{\vee} \setminus O^{\vee}$). Hence $V \setminus O \neq V^{\vee} \setminus O^{\vee}$ unless k = n - k.

Example 1.6. Let n = 4, $I = \{s_2\}$ and $J = \{s_1\}$. Then $X = \{s_3, s_1s_2\}$, and hence $V \setminus O$ (resp. $V^{\vee} \setminus O^{\vee}$) has two irreducible components $\{f_4^{-1}(0), f_3^{-1}(0)\}$ (resp. $\{f_4^{-1}(0), f_1^{-1}(0)\}$) of condimension one, and one component $C := \overline{Bw_{s}s_{1}s_{2}B} = \{(x_{ij}) \mid x_{41} = x_{42} = 0\} \text{ (resp. } C^{\vee} := \overline{Bw_{s}s_{2}s_{3}B} = \{(x_{ij}) \mid x_{41} = x_{42} = 0\} \text{ (resp. } C^{\vee} := \overline{Bw_{s}s_{2}s_{3}B} = \{(x_{ij}) \mid x_{41}x_{42}x_{43}^{*} > 0\} \text{ of condimension two. Since } |C| = q^{14} \text{ and } |C^{\vee}| = q^{16} - q^{10}(q^3 - 1)(q^3 - q), C \neq C^{\vee}. \text{ Thus the higher codimensional part of } C^{\vee} = q^{16} - q^{10}(q^3 - 1)(q^3 - q), C \neq C^{\vee}. \text{ Thus the higher codimensional part of } C^{\vee} = q^{16} - q^{10}(q^3 - 1)(q^3 - q), C \neq C^{\vee}. \text{ Thus the higher codimensional part of } C^{\vee} = Q^{16} - Q^{16}(q^3 - 1)(q^3 - q), C \neq C^{\vee}. \text{ Thus the higher codimensional part of } C^{\vee} = Q^{16} - Q^{16}(q^3 - 1)(q^3 - q), C \neq C^{\vee}. \text{ Thus the higher codimensional part of } C^{\vee} = Q^{16} - Q^{16}(q^3 - 1)(q^3 - q), C \neq C^{\vee}. \text{ Thus the higher codimensional part of } C^{\vee} = Q^{16} - Q^{16}(q^3 - 1)(q^3 - q), C \neq C^{\vee}. \text{ Thus the higher codimensional part of } C^{\vee} = Q^{16} - Q^{16}(q^3 - 1)(q^3 - q), C \neq C^{\vee}. \text{ Thus the higher codimensional part of } C^{\vee} = Q^{16} - Q^{16}(q^3 - 1)(q^3 - q), C \neq C^{\vee}. \text{ Thus the higher codimensional part of } C^{\vee} = Q^{16} - Q^{16}(q^3 - 1)(q^3 - q), C \neq C^{\vee}. \text{ Thus the higher codimensional part of } C^{\vee} = Q^{16} - Q^{16}(q^3 - 1)(q^3 - q), C \neq C^{\vee}. \text{ Thus the higher codimensional part of } C^{\vee} = Q^{16} - Q^{16}(q^3 - 1)(q^3 - 1)($ $V \setminus O$ and $V^{\vee} \setminus O^{\vee}$ can also become non-isomorphic.

Remark 1.7 (cf. [4, §4, Remark 26] and [2]). The following conditions are equivalent.

- (1) O is an affine variety.
- (2) $GL_n \setminus O$ is a hypersurface of GL_n .
- (3) $W \setminus w_S W_I W_I = \bigcup_{s \in S \setminus I \cup J} \{ w \in W \mid w \le w_S s \}.$
- (4) $W_I W_J = W \setminus \bigcup_{s \in S \setminus I \cup J} \{ w \in W \mid w \le w_S s \}.$
- (5) $W_I W_I = W_{I \cup I}$

(6) Let $\{I_{\alpha}\}_{\alpha}$ (resp. $\{J_{\beta}\}_{\beta}$) be the connected components of the Dynkin diagram (= the Coxeter diagram) of I (resp. J). If the Dynkin diagram of $I_a \cup J_\beta$ is connected, then $I_\alpha \subset J_\beta$ or $I_\alpha \supset J_\beta$.

Proof. Since $\{w \in W \setminus w_S W_I W_J \mid l(w) = l(w_S) - 1\} = \{w_S \mid s \in S \setminus I \cup J\}$, we get (2) \Leftrightarrow (3). Let us prove (5) \Rightarrow (6). Assume that $I_{\alpha} \setminus J_{\beta} \neq \phi$, $J_{\beta} \setminus I_a \neq \phi$, and the Dynkin diagram of $I_{\alpha} \cup J_{\beta} = :\{s_k, \dots, s_l\}$ is $s_k - s_{k+1} \dots - s_l$, $s_k \in J_{\beta} \setminus I_{\alpha}$, and $s_l \in I_{\alpha} \setminus J_{\beta}$. Using [1, no. 1.5, Lemma 4], we can show that $w := s_k s_{k+1} \dots s_l$ is the unique reduced expression of w. Hence $w \notin W_I W_J$, although $w \in W_{I \cup J}$. Thus we get the implication. The remainder is obvious or explained in [2].

§2. Here we give an affirmative answer to Problem 2. (See (2.2).) All that is necessary in our argument is the isomorphism $O \simeq O^{\vee}$ as abstract varieties. Therefore the answer remains affirmative even if 'regular' is replaced with 'quasi-regular' [5].

2.1. Let V and V^{\vee} be complex vector spaces of dimension $n, O \subseteq V$ (resp. $O^{\vee} \subseteq V^{\vee}$) a Zariski open set, $\{S_1, \dots, S_l\}$ (resp. $\{S_1^{\vee}, \dots, S_{l'}^{\vee}\}$) the irreducible components of $V \setminus O$ (resp. $V^{\vee} \setminus O^{\vee}$) of codimension one, and $\{T_1, \dots, T_m\}$ (resp. $\{T_1^{\vee}, \dots, T_{m'}^{\vee}\}$) those of codimension greater than one. Put $\Omega = V \setminus \bigcup_i S_i$ and $\Omega^{\vee} = V \setminus \bigcup_i S_i^{\vee}$. Let $f_i = 0$ (resp. $f_i^{\vee} = 0$) be a defining equation of S_i (resp. S_i^{\vee}). Let $\langle f_1, \dots, f_l \rangle$ be the multiplicative group generated by $\{f_1, \dots, f_l\}$. Define $\langle f_1^{\vee}, \dots, f_{l'}^{\vee} \rangle$ similarly.

Proposition 2.2. If $O \simeq O'$, then this isomorphism extends to $\Omega \simeq \Omega^{\vee}$, which induces a bijection $\{T_1, \dots, T_m\} \rightarrow \{T_1^{\vee}, \dots, T_{m'}^{\vee}\}$ and an isomorphism $\langle f_1, \dots, f_l \rangle \rightarrow \langle f_1^{\vee}, \dots, f_{l'}^{\vee} \rangle$. Especially l = l' and $\operatorname{card}\{j \mid \operatorname{codim} T_j = c\} =$ $\operatorname{card}\{j \mid \operatorname{codim} T_j^{\vee} = c\}$ for any c > 1.

Proof. The isomorphism $O \cong O^{\vee}$ induces $\Gamma(O, \mathcal{O}) \cong \Gamma(O^{\vee}, \mathcal{O})$, where \mathcal{O} denotes the sheaf of regular functions on the respective variety. Since $\Omega \setminus O$ (resp. $\Omega^{\vee} \setminus O^{\vee}$) is of codimension greater than one in Ω (resp. Ω^{\vee}), $\Gamma(O, \mathcal{O}) = \Gamma(\Omega, \mathcal{O})$ (resp. $\Gamma(O^{\vee}, \mathcal{O}) = \Gamma(\Omega^{\vee}, \mathcal{O})$). Hence the isomorphism $O \cong O^{\vee}$ extends to $\Omega \cong \Omega^{\vee}$. Note that the irreducible components of $\Omega \setminus O = T_1 \cup \cdots \cup T_m \setminus S_1 \cup \cdots \cup S_l$ are naturally in one to one correspondence with $\{T_1, \cdots, T_m\}$, and similar for $\Omega^{\vee} \setminus O^{\vee}$. Hence the isomorphism $\Omega \setminus O \cong \Omega^{\vee} \setminus O^{\vee}$ induces a bijection $\{T_1, \cdots, T_m\} \to \{T_1^{\vee}, \cdots, T_{m'}^{\vee}\}$. Using the long exact sequence of \mathbb{Z} -cohomologies with compact support

exact sequence of \mathbb{Z} -cohomologies with compact support $0 = H_c^{2n-2}(V) \to H_c^{2n-2}(S_1 \cup \cdots \cup S_l) \to H_c^{2n-1}(\Omega) \to H_c^{2n-1}(V) = 0,$ we get the natural isomorphism $\langle f_1, \cdots, f_l \rangle \simeq H_c^{2n-1}(\Omega)$, and similarly $\langle f_1^{\vee}, \cdots, f_{l'}^{\vee} \rangle \simeq H_c^{2n-1}(\Omega^{\vee}).$ Thus $\Omega \simeq \Omega^{\vee}$ induces the desired isomorphism. (Note that our argument works also in the positive characteristic case if H_c^* is understood as an *l*-adic étale cohomology.)

Remark 2.3. In the above proposition, it is enough to assume the existence of a homeomorphism $\varphi: \Omega \to \Omega^{\vee}$ such that $\varphi(O) = O^{\vee}$. (Assume that an analytic space Z is locally Euclidean at $z \in Z$. Then the germ of analytic space (Z, z), is of pure cohomological dimension, and hence the number of local irreducible components at z is rank $(\lim H_c^{top}(U)) = 1$, where U runs over the open neighbourhoods of z. Hence the irreducible components of Z are the closures of the connected components of the locus where Z is locally Euclidean. Thus irreducible components are characterized topologically, and

hence we get the bijection $\{T_1, \cdots, T_m\} \rightarrow \{T_1^{\vee}, \cdots, T_{m'}^{\vee}\}$.)

In the case where m = m' = 0, it is enough to assume the existence of a continuous mapping $O \to O^{\vee}$ inducing a quasi-isomorphism $R\Gamma_c(O, \mathbb{Z}) \to R\Gamma_c(O^{\vee}, \mathbb{Z})$. Cf. (2.5) below.

Remark 2.4. Assume the reductivity of G instead of the regularity of (G, V). As the argument of [4, p.71] shows, (0.4)-(0.6) remain valid, and the answer to both problems is affirmative.

If we do not assume the regularity nor the reductivity, then the following example settle everything negatively. Let G_i and $V_i(i = 1, 2)$ be as in (0.1), and $H = \operatorname{Hom}_C(V_1, V_2^{\vee})$ (additive group). Define the semi-direct product $G := (G_1 \times G_2) \ltimes H$ so that $(g_1, g_2)h(g_1, g_2)^{-1} = g_2hg_1^{-1}$, and define its action on $V := V_1 \bigoplus V_2^{\vee}$ by $(g_1, g_2) \cdot (v_1, v_2^{\vee}) = (g_1v_1, g_2v_2^{\vee})$ and $h \cdot (v_1, v_2^{\vee}) =$ $(v_1, h(v_1) + v_2^{\vee})$. Then we can show that (G, V) (resp. (G, V^{\vee})) is prehomogeneous if and only if (G_i, V_i) (resp. (G_2, V_2)) is prehomogeneous. Assume the prehomogeneity of both (G_i, V_i) . Let O_i be the respective open orbit. Then the open orbit of (G, V) (resp. (G, V^{\vee})) is $O_1 \times V_2^{\vee}$ (resp. $V_1^{\vee} \times O_2$).

open orbit of (G, V) (resp. (G, V^{\vee})) is $O_1 \times V_2^{\vee}$ (resp. $V_1^{\vee} \times O_2$). **Example 2.5.** Let $V_1 = M_2 (= C^2 \otimes C^2)$ and V_2 be the third symmetric tensor $S^3(C^2)$ of C^2 . Then $G_1 = G_2 = GL_2$ acts on V_1 by the left multiplication and on V_2 naturally. From these two prehomogeneous vector spaces (G, V) and (G, V^{\vee}) as in (2.4), whose open orbits are $O := O_1 \times V_2^{\vee}$ and $O^{\vee} := V_1^{\vee} \times O_2$. Fix a point $o_2 \in O_2$. Then the morphism $O_1 = GL_2 \ni g \to go_2 \in O_2$ and any linear isomorphism $V_2^{\vee} \to V_1^{\vee}$ induce a morphism $O \to O^{\vee}$ which induces a quasi-isomorphism $R\Gamma_c(O, \mathbb{Z}) \to R\Gamma_c(O^{\vee}, \mathbb{Z})$.

Remark 2.6. Assume the existence of an isomorphism between the open orbits of two prehomogeneous vector spaces, say (G_i, V_i) (i = 1,2), as abstract varieties. The author does not know whether this assumption implies the existence of a linear isomorphism between (V_i, Ω_i) 's, where Ω_i 's are defined as in (2.1) using the open orbits $O_i \subset V_i$.

Remark 2.7. In [3], prehomogeneous vector spaces with non-reductive groups play an important role. Most of them are not regular.

References

- [1] N. Bourbaki: Groupes et algèbres de Lie, chapitres 4,5 et 6. Masson (1981).
- [2] A. Gyoja: A counterexample in the theory of prehomogeneous vector spaces. Proc. Japan Acad., 66A, 26-27 (1990).
- [3] ——: Highest weight modules and b-functions of semi-invariants. I (preprint).
- [4] M. Sato and T. Kimura: A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J., 65, 1-155 (1977).
- [5] M. Sato, T. Shintani and M. Muro: Theory of prehomogeneous vector spaces (algebraic part). The English translation of Sato's lecture from Shintani's note. Nagoya Math. J., 120, 1-34 (1990).