82. On the Regularity of Prehomogeneous Vector Spaces

By Akihiko GYOJA
Institute of Mathematics, Yoshida College, Kyoto University
(Communicated by Shokichi IYanaga, M. J. A., Dec. 14, 1992)

Introduction. 0.1. Let G be a complex linear algebraic group, and $V(\neq 0)$ a complex vector space on which G acts via a rational representation. Let V^{\vee} denote the dual space of V, on which G acts naturally.
0.2. If V has an open G-orbit, then (G, V) is called a prehomogeneous vector space. A prehomogeneous vector space (G, V) is called regular if there exists a (non-zero) relatively invariant polynomial function $f(x)=f\left(x_{1}, \cdots\right.$, x_{n}) on V such that

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial^{2} \log f}{\partial x_{i} \partial x_{j}}\right) \not \equiv 0 \tag{0.3}
\end{equation*}
$$

Let (G, V) be a regular prehomogeneous vector space, and take f so that (0.3) holds. Then the following assertions hold [5, §2].
(0.4) (G, V^{\vee}) is also prehomogeneous.
(Moreover (G, V^{\vee}). is regular.)
(0.5) Let O (resp. O^{\vee}) be the open G-orbit in V (resp. V^{\vee}). Then $O \simeq O^{\vee}$.
(0.6) Let $V \backslash O=\left(\cup_{i=1}^{l} S_{i}\right) \cup\left(\cup_{j=1}^{m} T_{j}\right)$ (resp. $V^{\vee} \backslash O^{\vee}=\left(\cup_{i=1}^{l^{\prime}} S_{i}^{\vee}\right) \cup$ $\left(\cup_{j=1}^{m^{\prime}} T_{j}^{\vee}\right)$) be the irreducible decomposition, where the codimension of S_{i} and S_{i}^{\vee} (resp. T_{j} and T_{j}^{\vee}) are one (resp. greater than one). Then $l=l^{\prime}$.

Continue to assume (G, V) regular and prehomogeneous. Bearing (0.5) in mind, H. Yoshida posed the following problem.

Problem 1. $\quad V \backslash O \simeq V^{\vee} \backslash O^{\vee}$?
Bearing (0.6) in mind, let us also consider the following problem.
Problem 2. For any integer $c>1$, card $\left\{j \mid \operatorname{codim} T_{j}=c\right\}=\operatorname{card}$ $\left\{j \mid \operatorname{codim} T_{j}^{\vee}=c\right\}$?

We shall settle Problem 1 negatively in §1, and Problem 2 affirmatively in §2.

Convention. If no explanation is given, a lowercase letter should be understood as an element of the set denoted by the same uppercase letter. We define the Bruhat order of a Coxeter group so that the identity element is minimal. We denote the complex number field by \boldsymbol{C}, and the rational integer ring by \boldsymbol{Z}.
§1. 1.1. The following argument will be used. Let Z be a complex algebraic variety. We may assume that Z is defined over a field which is finitely generated over the rational number field. Then we can consider its specialization at enough general primes. Especially we obtain a variety over a finite field whenever the characteristic p and the cardinality q of the field are large enough. Let $|Z|=|Z|(q)$ be the cardinality of the rational points of the variety obtained above. We understand that $|\boldsymbol{Z}|$ is a function of q,
and defined if p and q are large enough. We write $|\boldsymbol{Z}|=\left|Z^{\prime}\right|$ etc., if equality holds for large p and q. If $Z \simeq Z^{\prime}$, then $|Z|=\left|Z^{\prime}\right|$.
1.2. Now we take up again the prehomogeneous vector space studied in [2]. Let $V=V^{\vee}=M_{n}$ be the totality of $n \times n$-matrices. Define the $G L_{n} \times$ $G L_{n}$-action on V (resp. V^{\vee}) by $\left(g_{1}, g_{2}\right) \cdot v=g_{1} v g_{2}^{-1}$ (resp. $\left(g_{1}, g_{2}\right) \cdot v^{\vee}=$ $\left.g_{2} v^{\vee} g_{1}^{-1}\right)$ for $g_{i} \in G L_{n}$. We consider $\left(G L_{n} \times G L_{n}, V^{\vee}\right)$ as the dual of $\left(G L_{n} \times G L_{n}, V\right)$ by the pairing $\left\langle v^{\vee}, v\right\rangle=\operatorname{trace}\left(v^{\vee} v\right)$. Let W be the totality of permutation matrices in $G L_{n}$, which we identify with the symmetric group. Let s_{i} be the transposition $(i, i+1)$ and $S=\left\{s_{1}, \ldots, s_{n-1}\right\}$. For $I \subset S$, let W_{I} be the subgroup of W generated by I, w_{I} the longest element of W_{I}, and $I^{\prime}:=w_{S} I w_{s}$. (The pair (W, S) is a Coxeter system. For its generality, we refer to [1, Chapter 4].) Put $P_{I}=B W_{I} B$ (the standard parabolic subgroup of type I). For $x=\left(x_{i j}\right) \in M_{n}$, put $f_{k}(x)=\operatorname{det}\left(x_{n-k+i, j}\right)_{1 \leq i, j \leq k}$. Then $f_{k}^{-1}(0)$ $=\overline{B w_{S} s_{k} B}$, where the (Zariski) closure is taken in M_{n}.
1.3. Let us consider the prehomogeneous vector space $\left(P_{I^{\prime}} \times P_{J}, V\right)$ and its dual ($P_{I^{\prime}} \times P_{J}, V^{\vee}$), which are regular since f_{n} satisfies (0.3). Let O (resp. O^{\vee}) be the open orbit in V (resp. V^{\vee}). Then $O=P_{I}, w_{s} P_{J}=$ $B w_{s} W_{I} W_{J} B$ and $O^{\vee}=B W_{J} W_{I} w_{S} B$ (cf. [1, no.2.1, Lemma 1]). Let X be the set of minimal elements of $W \backslash W_{I} W_{J}$ with respect to the Bruhat order. Then the irreducible components of $V \backslash O$ (resp. $V^{\vee} \backslash O^{\vee}$) are $\left\{f_{n}^{-1}(0), \overline{B w_{s} x B}\right.$ $(x \in X)\}$ (resp. $\left.\left\{f_{n}^{-1}(0), \overline{B x^{-1} w_{s} B}(x \in X)\right\}\right)$.

Lemma 1.4. $\quad f_{k}^{-1}(0) \neq f_{l}^{-1}(0)$ unless $k=l$.
Proof. Use (1.1), noting $\left|M_{n}\right|-\left|f_{k}^{-1}(0)\right|=\left|M_{n} \backslash f_{k}^{-1}(0)\right|=q^{n^{2}-k^{2}}$ $\Pi_{i=0}^{k-1}\left(q^{k}-q^{i}\right)$.

Example 1.5. Let $I=J=S \backslash\left\{s_{k}\right\}$. Then $X=\left\{s_{k}\right\}$, and hence $\overline{B w_{S} s_{k} B}$ $=f_{k}^{-1}(0)\left(\right.$ resp. $\left.\overline{B s_{k} w_{S} B}=\overline{B w_{S} s_{n-k} B}=f_{n-k}^{-1}(0)\right)$ and $f_{n}^{-1}(0)$ are the irreducible components of $V \backslash O$ (resp. $V^{\vee} \backslash O^{\vee}$). Hence $V \backslash O \nsubseteq V^{\vee} \backslash O^{\vee}$ unless $k=n-k$.

Example 1.6. Let $n=4, I=\left\{s_{2}\right\}$ and $J=\left\{s_{1}\right\}$. Then $X=\left\{s_{3}, s_{1} s_{2}\right\}$, and hence $V \backslash O$ (resp. $V^{\vee} \backslash O^{\vee}$) has two irreducible components $\left\{f_{4}^{-1}(0)\right.$, $\left.f_{3}^{-1}(0)\right\}$ (resp. $\left\{f_{4}^{-1}(0), f_{1}^{-1}(0)\right\}$) of condimension one, and one component $C:=\overline{B w_{s} s_{1} s_{2} B}=\left\{\left(x_{i j}\right) \mid x_{41}=x_{42}=0\right\} \quad$ (resp. $C^{\vee}:=\overline{B w_{S} s_{2} s_{3} B}=\left\{\left(x_{i j}\right)\right.$ \mid rank $\left(\begin{array}{c}x_{31} x_{31} x_{12} x_{23} \\ x_{41} x_{43} \\ q_{3}\end{array}<2\right\}$) of condimension two. Since $|C|=q^{14}$ and $\left|C^{\vee}\right|=$ $q^{16}-q^{10}\left(q^{2}-1\right)\left(q^{3}-q\right), C \neq C^{\vee}$. Thus the higher codimensional part of $V \backslash O$ and $V^{\vee} \backslash O^{\vee}$ can also become non-isomorphic.

Remark 1.7 (cf. [4, §4, Remark 26] and [2]). The following conditions are equivalent.
(1) O is an affine variety.
(2) $G L_{n} \backslash O$ is a hypersurface of $G L_{n}$.
(3) $W \backslash w_{s} W_{I} W_{J}=\cup_{s \in S \backslash I U J}\left\{w \in W \mid w \leq w_{s} s\right\}$.
(4) $W_{I} W_{J}=W \backslash \cup_{s \in S \backslash I \cup J}\left\{w \in W \mid w \leq w_{S} s\right\}$.
(5) $W_{I} W_{J}=W_{I \cup J}$.
(6) Let $\left\{I_{\alpha}\right\}_{\alpha}$ (resp. $\left\{J_{\beta}\right\}_{\beta}$) be the connected components of the Dynkin diagram ($=$ the Coxeter diagram) of I (resp. J). If the Dynkin diagram of $I_{a} \cup J_{\beta}$ is connected, then $I_{\alpha} \subset J_{\beta}$ or $I_{\alpha} \supset J_{\beta}$.

Proof. Since $\left\{w \in W \backslash w_{s} W_{I} W_{J} \mid l(w)=l\left(w_{s}\right)-1\right\}=\left\{w_{S} s \mid s \in S \backslash I\right.$ $\cup J\}$, we get (2) \Leftrightarrow (3). Let us prove (5) \Rightarrow (6). Assume that $I_{\alpha} \backslash J_{\beta} \neq \phi, J_{\beta} \backslash$ $I_{a} \neq \phi$, and the Dynkin diagram of $I_{\alpha} \cup J_{\beta}$ is connected. Then we may assume that the Dynkin diagram of $I_{\alpha} \cup J_{\beta}=:\left\{s_{k}, \cdots, s_{l}\right\}$ is $s_{k}-s_{k+1} \cdots-s_{l}$, $s_{k} \in J_{\beta} \backslash I_{\alpha}$, and $s_{l} \in I_{\alpha} \backslash J_{\beta}$. Using [1, no. 1.5, Lemma 4], we can show that $w:=s_{k} s_{k+1} \cdots s_{l}$ is the unique reduced expression of w. Hence $w \notin W_{I} W_{J}$, although $w \in W_{I \cup J}$. Thus we get the implication. The remainder is obvious or explained in [2].
§2. Here we give an affirmative answer to Problem 2. (See (2.2).) All that is necessary in our argument is the isomorphism $O \simeq O^{\vee}$ as abstract varieties. Therefore the answer remains affirmative even if 'regular' is replaced with 'quasi-regular' [5].
2.1. Let V and V^{\vee} be complex vector spaces of dimension $n, O \subset V$ (resp. $O^{\vee} \subset V^{\vee}$) a Zariski open set, $\left\{S_{1}, \cdots, S_{l}\right\}$ (resp. $\left\{S_{1}^{\vee}, \cdots, S_{l^{\prime}}^{\vee}\right\}$) the irreducible components of $V \backslash O$ (resp. $V^{\vee} \backslash O^{\vee}$) of codimension one, and $\left\{T_{1}, \cdots, T_{m}\right\}$ (resp. $\left\{T_{1}^{\vee}, \cdots, T_{m^{\prime}}^{\vee}\right\}$) those of codimension greater than one. Put $\Omega=V \backslash \cup_{i} S_{i}$ and $\Omega^{\vee}=V \backslash \cup_{i} S_{i}^{\vee}$. Let $f_{i}=0$ (resp. $f_{i}^{\vee}=0$) be a defining equation of S_{i} (resp. S_{i}^{\vee}). Let $\left\langle f_{1}, \cdots, f_{l}\right\rangle$ be the multiplicative group generated by $\left\{f_{1}, \cdots, f_{l}\right\}$. Define $\left\langle f_{1}^{\vee}, \cdots, f_{l^{\prime}}^{\vee}\right\rangle$ similarly.

Proposition 2.2. If $O \simeq O^{\prime}$, then this isomorphism extends to $\Omega \simeq \Omega^{\vee}$, which induces a bijection $\left\{T_{1}, \cdots, T_{m}\right\} \rightarrow\left\{T_{1}^{\vee}, \cdots, T_{m^{\prime}}^{\vee}\right\}$ and an isomorphism $\left\langle f_{1}, \cdots, f_{l}\right\rangle \rightarrow\left\langle f_{1}^{\vee}, \cdots, f_{l^{\prime}}^{\vee}\right\rangle$. Especially $l=l^{\prime}$ and $\operatorname{card}\left\{j \mid \operatorname{codim} T_{j}=c\right\}=$ $\operatorname{card}\left\{j \mid \operatorname{codim} T_{j}^{\vee}=c\right\}$ for any $c>1$.

Proof. The isomorphism $O \simeq O^{\vee}$ induces $\Gamma(O, \mathfrak{O}) \simeq \Gamma\left(O^{\vee}, \mathfrak{O}\right)$, where \mathfrak{O} denotes the sheaf of regular functions on the respective variety. Since $\Omega \backslash O$ (resp. $\Omega^{\vee} \backslash O^{\vee}$) is of codimension greater than one in Ω (resp. Ω^{\vee}), $\Gamma(O, \mathscr{O})=\Gamma(\Omega, \mathscr{O})\left(\right.$ resp. $\left.\Gamma\left(O^{\vee}, \mathscr{O}\right)=\Gamma\left(\Omega^{\vee}, \mathscr{O}\right)\right)$. Hence the isomorphism $O \simeq O^{\vee}$ extends to $\Omega \simeq \Omega^{\vee}$. Note that the irreducible components of $\Omega \backslash O$ $=T_{1} \cup \cdots \cup T_{m} \backslash S_{1} \cup \cdots \cup S_{l}$ are naturally in one to one correspondence with $\left\{T_{1}, \cdots, T_{m}\right\}$, and similar for $\Omega^{\vee} \backslash O^{\vee}$. Hence the isomorphism $\Omega \backslash O \simeq$ $\Omega^{\vee} \backslash O^{\vee}$ induces a bijection $\left\{T_{1}, \cdots, T_{m}\right\} \rightarrow\left\{T_{1}^{\vee}, \cdots, T_{m^{\prime}}^{\vee}\right\}$. Using the long exact sequence of \boldsymbol{Z}-cohomologies with compact support

$$
0=H_{c}^{2 n-2}(V) \rightarrow H_{c}^{2 n-2}\left(S_{1} \cup \cdots \cup S_{l}\right) \rightarrow H_{c}^{2 n-1}(\Omega) \rightarrow H_{c}^{2 n-1}(V)=0,
$$

we get the natural isomorphism $\left\langle f_{1}, \cdots, f_{l}\right\rangle \simeq H_{c}^{2 n-1}(\Omega)$, and similarly $\left\langle f_{1}^{\vee}, \cdots, f_{l^{\prime}}^{\vee}\right\rangle \simeq H_{c}^{2 n-1}\left(\Omega^{\vee}\right)$. Thus $\Omega \simeq \Omega^{\vee}$ induces the desired isomorphism. (Note that our argument works also in the positive characteristic case if H_{c}^{*} is understood as an l-adic étale cohomology.)

Remark 2.3. In the above proposition, it is enough to assume the existence of a homeomorphism $\varphi: \Omega \rightarrow \Omega^{\vee}$ such that $\varphi(O)=O^{\vee}$. (Assume that an analytic space Z is locally Euclidean at $z \in Z$. Then the germ of analytic space (Z, z), is of pure cohomological dimension, and hence the number of local irreducible components at z is rank $\left(\lim _{\vec{c}} H_{c}^{t o p}(U)\right)=1$, where U runs over the open neighbourhoods of z. Hence the irreducible components of Z are the closures of the connected components of the locus where Z is locally Euclidean. Thus irreducible components are characterized topologically, and
hence we get the bijection $\left.\left\{T_{1}, \cdots, T_{m}\right\} \rightarrow\left\{T_{1}^{\vee}, \cdots, T_{m^{\prime}}^{\vee}\right\}.\right)$
In the case where $m=m^{\prime}=0$, it is enough to assume the existence of a continuous mapping $O \rightarrow O^{\vee}$ inducing a quasi-isomorphism $R \Gamma_{c}(O, \boldsymbol{Z}) \rightarrow$ $R \Gamma_{c}\left(O^{\vee}, \boldsymbol{Z}\right)$. Cf. (2.5) below.

Remark 2.4. Assume the reductivity of G instead of the regularity of (G, V). As the argument of [4, p.71] shows, (0.4)-(0.6) remain valid, and the answer to both problems is affirmative.

If we do not assume the regularity nor the reductivity, then the following example settle everything negatively. Let G_{i} and $V_{i}(i=1,2)$ be as in (0.1), and $H=\operatorname{Hom}_{C}\left(V_{1}, V_{2}^{\mathrm{V}}\right)$ (additive group). Define the semi-direct product $G:=\left(G_{1} \times G_{2}\right) \ltimes H$ so that $\left(g_{1}, g_{2}\right) h\left(g_{1}, g_{2}\right)^{-1}=g_{2} h g_{1}^{-1}$, and define its action on $V:=V_{1} \oplus V_{2}^{\vee}$ by $\left(g_{1}, g_{2}\right) \cdot\left(v_{1}, v_{2}^{\vee}\right)=\left(g_{1} v_{1}, g_{2} v_{2}^{\vee}\right)$ and $h \cdot\left(v_{1}, v_{2}^{\vee}\right)=$ $\left(v_{1}, h\left(v_{1}\right)+v_{2}^{\vee}\right)$. Then we can show that (G, V) (resp. (G, V^{\vee})) is prehomogeneous if and only if $\left(G_{1}, V_{1}\right)$ (resp. $\left(G_{2}, V_{2}\right)$) is prehomogeneous. Assume the prehomogeneity of both $\left(G_{i}, V_{i}\right)$. Let O_{i} be the respective open orbit. Then the open orbit of (G, V) (resp. $\left(G, V^{\vee}\right)$) is $O_{1} \times V_{2}^{\vee}\left(\right.$ resp. $\left.V_{1}^{\vee} \times O_{2}\right)$.

Example 2.5. Let $V_{1}=M_{2}\left(=\boldsymbol{C}^{2} \otimes \boldsymbol{C}^{2}\right)$ and V_{2} be the third symmetric tensor $S^{3}\left(\boldsymbol{C}^{2}\right)$ of \boldsymbol{C}^{2}. Then $G_{1}=G_{2}=G L_{2}$ acts on V_{1} by the left multiplication and on V_{2} naturally. From these two prehomogeneous vector spaces (G_{i}, $\left.V_{i}\right)(i=1,2)$, we can construct prehomogeneous vector spaces (G, V) and $\left(G, V^{\vee}\right)$ as in (2.4), whose open orbits are $O:=O_{1} \times V_{2}^{\vee}$ and $O^{\vee}:=V_{1}^{\vee} \times$ O_{2}. Fix a point $o_{2} \in O_{2}$. Then the morphism $O_{1}=G L_{2} \ni g \rightarrow g o_{2} \in O_{2}$ and any linear isomorphism $V_{2}^{\vee} \rightarrow V_{1}^{\vee}$ induce a morphism $O \rightarrow O^{\vee}$ which induces a quasi-isomorphism $R \Gamma_{c}(O, \boldsymbol{Z}) \rightarrow R \Gamma_{c}\left(O^{\vee}, \boldsymbol{Z}\right)$.

Remark 2.6. Assume the existence of an isomorphism between the open orbits of two prehomogeneous vector spaces, say $\left(G_{i}, V_{i}\right)(i=1,2)$, as abstract varieties. The author does not know whether this assumption implies the existence of a linear isomorphism between $\left(V_{i}, \Omega_{i}\right)$'s, where Ω_{i} 's are defined as in (2.1) using the open orbits $O_{i} \subset V_{i}$.

Remark 2.7. In [3], prehomogeneous vector spaces with non-reductive groups play an important role. Most of them are not regular.

References

[1] N. Bourbaki: Groupes et algèbres de Lie, chapitres 4,5 et 6. Masson (1981).
[2] A. Gyoja: A counterexample in the theory of prehomogeneous vector spaces. Proc. Japan Acad., 66A, 26-27 (1990).
[3] -: Highest weight modules and b-functions of semi-invariants. I (preprint).
[4] M. Sato and T. Kimura: A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J., 65, 1-155 (1977).
[5] M. Sato, T. Shintani and M. Muro: Theory of prehomogeneous vector spaces (algebraic part). The English translation of Sato's lecture from Shintani's note. Nagoya Math. J., 120, 1-34 (1990).

