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Abstract: In this note we investigate the structure of m-regular
semigroups, the nonzero idempotents of which are primitive.

Various characterizations for primitive regular semigroups have been
obtained by T. E. Hall [4], G. Lallement and M. Petrich [6], G. B. Preston [7],
0. Steinfeld [8] and P. S. Venkatesan [9], [10](this appeared also in the book
of A. H. Clifford and G. B. Preston [3]). ]J. Fountain [5] considered primitive
abundant semigroups. In this paper we consider primitive m-regular semi-
groups and in this way we generalize the previous results for primitive regu-
lar semigroups.

Throughout this paper, Z" will denote the set of all positive integers. If
S is a semigroup with zero 0, we will write S = S and S* = S — {0).

An element @ of a semigroup S = S%is a nilpotent if there exists
n € Z* such that @" = 0. The set of all nilpotents of a semigoup S is de-
noted by Nil(S). A semigroup S is a nil-semigroup if S = Nil(S). An ideal
I of a semigroup S = S is a mil-ideal of S if I'is a nil-semigroup. An ideal
extension S of a semigroup K is a wmil-estension of K if S/K is a
nil-semigroup. By R™(S) we denote Clifford’s radical of a semigroup S = S°,
i.e. the union of all nil-ideals of S (it is the greatest nil-ideal of S).

A semigroup S is mw-regular (completely m-regular) if for every a € S
there exist # € Z* and x € S such that @" = a"za" (a" = a"xa" and "z =
za"). A semigroup S is T-inverse if S is mw-regular and every regular element
of S has a unique inverse. If A is a nonempty subset of a semigroup S, then
by Reg(A) (E (A)) we denote the set of all regular elements (idempotents) of
A. If e is an idempotent of a semigroup S then we denote by G, the maximal
subgroup of S with e as its identity. A nonzero idempotent e of a semigroup
S = S° is primitive if for every f € E(S™), f=ef =fe= f= ¢, ie. if ¢ is
minimal in E(S*), relative to the partial order on E(S™. A semigroup S =
S%is primitive if all of its nonzero idempotents are primitive.

For undefined notion and notations we refer to [2] and [3].

Lemma 1. Let S= S° be a semigroup. If eS(Se) is a O-minimal right
(left) ideal of S generated by a nonzero idempotent e, then e is primitive.

Proof. For a proof see Lemma 6.38 [3].

The converse of the previous lemma is not true. For example, in the
semigroup S = {a, e,0|a2=0, e2=e, ae=0,ea=a,ad=0a=e0=
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O0e=0"=0), ¢ is a primitive idempotent. But ¢S =S, so eS is not a
0-minimal right ideal of S.

Now we introduce the following

Definition 1. A nonzero idempotent ¢ of a semigroup S = S° which
generates O-minimal left (right) ideal is called left (right) completely primitive.
An idempotent e is completely primitive if it is both left and right completely
primitive.

A semigroup S is (left, right) completely primitive if all of its nonzero
idempotents are (left, right) completely primitive.

For regular semigroups we have the following

Lemma 2 [3]. Let S= S° be a regular semigroup and let e € E(S*).
Then e is primitive if and only if ¢S (Se) is a O-minimal left (vight) ideal of S.

Therefore, in regular semigroups the notions “primitive” and “completely
primitive” coincide.

Lemma 3. Let S = S° be a primitive m-regular semigroup. Then S is com-
bletely T-regular with maximal subgroups given by

. =eSe— N,

where e € E (S™) and N = Nil(S).

Proof. For a proof see Lemma 1 [1].

Theorem 1. The following conditions on a semigroup S = S ° are equiva-
lent:

(1) S is a nil-extension of a primitive regulay semigroup ;

(11) S is a completely primitive T-regular semigroup ;

(i11) S is completely T-regular and SeS is a O-minimal ideal of S for every
e€ E(SY;

(iv) S is a primitive w-regular semigroup and R™(SE (S)S) = {0}.

Proof. (1)=> (i1). Let S be a nil-extension of a primitive regular semi-
group T. Assume ¢ € E (S™). Then

eS = ¢’S S eTS S eT < ¢S,

whence eS = eT. By Lemma 2 we obtain that eT is a O-minimal right ideal
of T, and of S also. Therefore, S is right completely primitive. Similarly it
can be proved that S is left completely primitive. It is clear that S is
m-regular. Thus, (11) holds.

(11)=> (1). Let S be a w-regular completely primitive semigroup. Let

R=UeS, L= U Se, E=E(S).

ecE ecE
It is easy to verify that R is a right ideal and L is a left ideal of S. Since
eSS R, Se S L, for every ¢ € E(S™), then by hypothesis we obtain that
¢S = ¢R and Se = Le, whence
R= UeR, L= U Le.

ecFE ek
By Theorem 6.39 [3] it follows that R and L are primitive regular semi-
groups. Thus, R, L S Reg(S). Assume a € Reg(S™. Then a = eaf for
some e, f € E(S¥), whence a € eS N SFE RN L Thus Reg(S) <
R N L. Therefore, Reg(S) = R = L is an ideal of S, and since for every
a € S there exists # € Z* such that " € Reg(S), we have that S is a
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nil-extension of a primitive regular semigroup.

(1) = (iv). Let S be a nil-extension of a regular primitive semigroup
T. It is clear that S is primitive and mw-regular and that T = SE (S)S. Since
T has not nonzero nil-ideals, we have R*(SE (S)S) = R™(T) = {0).

(iv) = (11 ). Let S be a primitive m-regular semigroup and let
R*(SE(S)S) = {0} . Assume ¢ € E(S™). Let I be a nonzero ideal of S
contained in SeS. Then [ is an ideal of SE(S)S, so by the hypothesis we
obtain that I is not a nil-ideal, so there exists @ € I — Nil(S). Moreover,
there exists # € Z* and x € S such that a" = a"za”. Let f = a”"x. Then
f € E(S™ and by a” € I it follows that f €IS SeS, so f= uev for some
u,v € S. Let g = evfue. Then g° = g = ge = eg and ugv = f, so g # 0. By
the primitivity of ¢ we obtain that g = e, whence

e=cvfue € SFSS SISS I.

Thus SeS € I, i.e. SeS = I. Therefore, SeS is a O-minimal ideal of S.

By Lemma 3 it follows that S is completely m-regular.

(111) = (1). Let (111) hold and let

T=SE(S)S= U SeS, E=E(S).

For a € Reg(S™) we have that a £%a for some ¢ € E(S®,s0o a=¢ea€<
SeS € T, Thus, Reg(S) < T. Since S is completely m-regular, then for all
e € E(S*), SeS is also completely m-regular, so we obtain by Munn's
theorem ([2], Theorem 2.55) that SeS is a completely O-simple semigroup.
Thus, T S Reg(S), ie. Reg(S) = T. Therefore, S is a nil-extension of a
primitive regular semigroup T = Reg(S).

Lemma 4. Let S = S° be a semigroup. Then

R*(S/R*(S)) = {0}.

Proof. Let S/R*(S) = @, Let ¢ : S— @ be the natural homomorphism
and let I be a nil-ideal of Q. Assume J = {x € S| ¢(x) € I}. Then it is
easy to verify that J is a nil-ideal of S, whence J S R*(S), so I is the zero
ideal of @.

We can now prove the structural theorem for primitive regular semi-
groups :

Theorem 2. The following conditions on a semigroup S are equivalent :

(1) S is a primitive T-vegular semigroup ;

(1) S is an ideal extension of a nil-semigroup by a completely primitive
T-regular semigoup ;

(i11) S is a nil-extension of a semigroup which is an ideal extension of a
nil-semigroup by a primitive vegular semigroup.

Proof. (1) => (ii). Let S be a primitive mw-regular semigroup. Then it is
clear that S/R*(S) is a primitive m-regular semigroup, so by Lemma 4 and
Theorem 1, we obtain that S/R™(S) is compeletely primitive. Thus, (11 )
holds.

(ii) = (1). Let S be an ideal extension of a nil-semigroup T by a com-
pletely primitive w-regular semigroup . Let us identify partial semigroups
S— T and Q% Assume a € S. If <a@> S S — T, then <a> € Q" in @, so
there exists # € Z* and £ € Q™ such that @" = @"za" in @, whence a”" =
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a"za” in S. If <a) N T # ¢, then a is a nilpotent, so it is m-regular. It is
clear that S is primitive. Therefore, S is a primitive w-regular semigroup.

(1) = (1i1). Let S be a primitive mw-regular semigroup and let K =
SES, where E = E (S). Since Reg(S) € K and S is mw-regular, then S is a
nil-extension of K. Let R = R*(K), Q= K/R and E' = E(Q). Let x € Q.
Then x = @(a) for some a € K and ¢ is the natural homomorphism of K
onto Q. Since

KEK < SES S SE*EE®S < (SES)E (SES) = KEK,
thus K = KEK. We have a = uev for some #, v € K, e € E, whence
x=g(a) = pw)p(e)pv) € QE'Q.
Hence @ = QE’Q. Since R*(Q) = R*(QE’Q) =0 and @ is primitive
m-regular, it follows from the proof of Theorem 1 that @ is a primitive regu-
lar semigroup.

(iii) = (i ). Let S be a nil-extension of a semigroup T and let T be an
ideal extension of a nil-semigroup R by a primitive regular semigroup .
Since we can identify partial semigroups E(S) = E(T) and E(Q), so S is
primitive. It is clear that S is w-regular. Thus (1) holds.

Corollary 1. A semigroup S = S° is a completely primitive w-inverse semi-
group if and only if S is a nil-extension of a primitive inverse semigroup.

Corollary 2. The following conditions on a semigroup S are equivalent :

(1) S is a primitive T-inverse semigroup

(11) S is an ideal extension of a wil-semigroup by a completely primitive
T-1inverse semigroup

(111) S is a wnil-extension of a semigroup which is an ideal extension of a
nil-semigroup by a primitive inverse semigroup.

References

[1] S. Bogdanovi¢ and S. Mili¢: A nil-extension of a completely simple semigroup.
Publ. Inst. Math., 36(50), 45—50 (1984).

[2] A. H. Clifford and G. B. Preston: The algebraic theory of semigroups. I. Amer.
Math. Soc. (1961).

[3] ——: The algebraic theory of semigroups. IL. ibid. (1967).

[4]) T. Hall: On the natural order of J-class and of idempotents in' a regular semi-
group. Glasgow Math. J., 11, 167—-168 (1970).

[5] J. Fountain: Abundant semigroups. Proc. London Math. Soc., 44(3), 103-129
(1982).

[6] G. Lallement and M. Petrich: Décomposition I-matricielles d’'un demigroupe. J.
Math. Pures Appl., 45, 67—117 (1966).

[7] G. B. Preston: Matrix representations of inverse semigroups. J. Australian Math.
Soc., 9, 29-61 (1969).

[8] O. Steinfeld: On semigroups which are unions of completely O-simple semi-
groups. Czech. Math. J., 16, 63—-69 (1966).

[9] P. S. Venkatesan: On a class of inverse semigroups. Amer. J. Math., 84,
578-582 (1962).

[10] ——: On decomposition of semigroups with zero. Math. Zeitsch., 92, 164—-174
(1966).



