75. On the Dirichlet Form on a Lusinian State Space

By Kazuaki NAKANE

Department of Mathematics, Kanazawa University (Communicated by Kiyosi ITÔ, M. J. A., Dec. 14, 1992)

Introduction. The Dirichlet forms on locally compact state spaces have been studied by many authors. Recently this theory of Dirichlet forms has been extended to non-locally compact state spaces. Albeverio and Ma [1] gave a necessary and sufficient condition for the Dirichlet form on a metrizable topological state space to be associated with a special standard process. They called this Dirichlet form quasi-regular (cf. [3]). On the other hand, Shigekawa and Taniguchi [12] showed that various results known for locally compact state spaces, such as the Beurling-Deny formula, the uniqueness of the α -potentials, are also valid for Lusinian separable metric state spaces. The key lemma in [12] is a uniqueness statement for a measure which charges no set of zero capacity. Its proof needs the Gel'fand compactification (cf. [4], [9]). To use the Gel'fand compactification we must assume that there exists a dense subset consisting of continuous functions in the domain of the Dirichlet form. However, this assumption is not necessary for the existence of the associated process (cf. [1]). In fact Albeverio, Röckner and Ma [3] showed the same results for quasi-Dirichlet form on general state spaces. They also used another type of compactification (cf. [10]).

In this note we shall show for the quasi-regular Dirichlet form the uniqueness statement of a measure charging no set of zero capacity without using any type of compactification.

2. Preliminary. Let X be a Lusinian separable metric space and let $\mathcal{B}(X)$ be its topological Borel field. Let ρ be its metric. We fix a probability measure m on $(X, \mathcal{B}(X))$ such that $\sup[m] = X$.

We consider a Dirichlet form $(\mathcal{E}, \mathcal{F})$ on $L^2(X, m)$ (for its definition see e.g. [8]). We set

(2.1)
$$\mathscr{E}_1(f,g) \equiv \mathscr{E}(f,g) + (f,g), \quad f,g \in \mathscr{F},$$
 where (\cdot,\cdot) denotes the inner product of $L^2(X,m)$.

For an open subset G of X and any subset A of X, we define

(2.2)
$$\operatorname{Cap}(G) \equiv \inf \{ \mathcal{E}_1(u, u) ; u \in \mathcal{F} \text{ and } u \geq 1 \text{ } m\text{-a.e. on } G \},$$

(2.2)
$$\operatorname{Cap}(A) \equiv \inf \left\{ \operatorname{Cap}(G) ; G \text{ is open and } A \subset G \right\}.$$

Then we can show that this Cap is a Choquet capacity.

A statement depending on $x \in A$ is said to hold "quasi-everywhere" or simply "q.e.", if it holds on A except for a set of zero capacity with respect to Cap. A function $u: X \to R$ is said to be quasi-continuous if there exists a decreasing sequence $\{G_n\}_{n=1}^{\infty}$ of open sets such that $\operatorname{Cap}(G_n) \downarrow 0$, and $u|_{X \setminus G_n}$ is continuous on each $X \setminus G_n$.

3. The main theorem. We assume that the Dirichlet form $(\mathscr{E}, \mathscr{F})$ satis-

fies the following conditions:

- (A.1) Cap(\cdot) is tight; for any $\varepsilon > 0$, there exists a compact set $K \subseteq X$ such that Cap $(X \setminus K) < \varepsilon$.
- (A.2) There exists an \mathscr{E}_1 -dense subset \mathscr{F}_0 of \mathscr{F} consisting of quasicontinuous functions.
- (A.3) There exists a countable subset \mathcal{B}_0 of \mathcal{F}_0 and a subset $N \in \mathcal{B}(X)$ with $\operatorname{Cap}(N) = 0$ such that

$$\sigma \{u \in \mathcal{B}_0\} \supset \mathcal{B}(X) \cap (X \setminus N).$$

These conditions (A.1-3) are introduced by Albeverio and Ma [1]. Shigekawa and Taniguchi [12] used instead of (A.2) the following condition:

(A.2') There exists an \mathscr{E}_1 -dense subset \mathscr{F}_0 of \mathscr{F} consisting of bounded continuous functions.

However, the condition (A.1,2',3) are not necessary for the existence of the associated process. In fact, Albeverio and Ma proved that the above conditions (A.1-3) are necessary and sufficient for $(\mathscr{E}, \mathscr{F})$ to be associated with a special standard process ([1], [7]). They called this Dirichlet form quasiregular (cf. [3]). It is further known that, if a cemetery point Δ is adjoined to X as an isolated point in $X_{\Delta} = X \cup \Delta$, this process is a Hunt process (cf. [1], [2], [12]).

In this note, we assume in addition to (A.1-3) that

(A.4) \mathcal{F}_0 contains u = 1 q.e.,

and show the uniqueness of a measure charging no set of zero capacity, improving the result of Shigakawa and Taniguchi with (A.1,2',3,4). Without loss of generality, we may assume that \mathcal{F}_0 is a \mathbf{Q} -algebra and closed under the operations $\vee 0$ and $\wedge 1$.

Theorem 1. Let $(\mathscr{E}, \mathscr{F})$ be a Dirichlet form on $L^2(X, m)$ and assume that $(\mathscr{E}, \mathscr{F})$ satisfies (A.1-4). Let K be a compact subset of X. Denote the subset of \mathscr{F}_0 of the bounded functions by $b\mathscr{F}_0$. Then there exists a sequence $\{f_n\}_{n=1}^{\infty}$ in $b\mathscr{F}_0$ with $0 \le f_n \le 1$ such that

$$f_n \longrightarrow I_K$$
, q.e.

In particular, if μ and ν are finite measures on $(X, \mathcal{B}(X))$ charging no set of zero capacity such that

$$\int_X f d\mu = \int_X f d\nu, \quad f \in b\mathcal{F}_0,$$

then $\mu = \nu$.

Lemma 1. Let X be a separable metric space. Then $\mathcal F$ is separable with respect to the $\mathcal E_1$ -norm.

Proof. See [8, Section 1.3].

Lemma 2. Let F be a set. Consider a countable subset G of F and a countable collection S of mappings s of $F \times F$ to F. Then there exists a countable set H such that

- (a) $G \subseteq H \subseteq F$,
- (b) $s(H \times H) \subset H$, $s \in S$.

Proof. See [8, Lemma 6.1.1].

Lemma 3. There exists a countable subset \mathcal{H} of \mathcal{F}_0 consisting of

quasi-continuous factions such that

- (1) \mathcal{H} contains u = 1 q.e.,
- (2) $\mathcal{B}_0 \subset \mathcal{H}$,
- (3) \mathcal{H} is dense in \mathcal{F} with respect to the \mathscr{E}_1 -norm,
- (4) \mathcal{H} is an algebra over \mathbf{Q} ,
- (5) \mathcal{H} is closed under the operations $\vee 1$ and $\wedge 0$.

Proof. We define the mappings from $\mathscr{F}_0 \times \mathscr{F}_0$ into \mathscr{F}_0 as follows: $s_1(f,g) = f+g$, $s_2(f,g) = fg$, $s_3(f,g) = f\vee 0$, $s_4(f,g) = f\wedge 1$, $s^a(f,g) = af$, $a\in Q$. We set $\mathscr{S}=\{s_1,s_2,s_3,s_4,s^a;a\in Q\}$. By Lemma 1 and (A.2), we can choose a countable subset $\{u_n\}_{n=1}^\infty$ of \mathscr{F}_0 such that $\{u_n\}_{n=1}^\infty$ is dense in \mathscr{F} with respect to the \mathscr{E}_1 -norm, and we suppose $\{u_n\}_{n=1}^\infty$ contains a function $u\in \mathscr{F}_0$ which is equal to 1 quasi-everywhere. We can apply Lemma 2 with $S=\mathscr{S}$, $F=\mathscr{F}_0$ and $G=\{u_n\}_{n=1}^\infty\cup\mathscr{B}_0$ to get \mathscr{H} (e.g. [8, Lemma 6.1.2]).

In the following, $\mathcal H$ denotes a subset of $\mathcal F_0$ which has the properties in Lemma 3.

Lemma 4. \mathcal{H} separates the points of $X \setminus N$.

Proof. Suppose that there exist $x, y \in X \setminus N$ such that f(x) = f(y) for all $f \in \mathcal{H}$. We must have $x, y \in \bigcap_{f \in \mathcal{H}} f^{-1}(f(x))$. Since \mathcal{H} includes \mathcal{B}_0 and \mathcal{B}_0 generates the Borel sets of $X \setminus N$, $\bigcap_{f \in \mathcal{H}} f^{-1}(f(x))$ is an atom of $X \setminus N$. Hence $x, y \in \{x\}$. This means x = y (cf. [1. Lemma A.7]).

Lemma 5. There exists a sequence of closed subsets $\{F_k^{(1)}\}_k$ of X such that $\mathcal{H} \subset C(\{F_k^{(1)}\}_k)$,

and

$$Cap(X \setminus F_{k}^{(1)}) \to 0$$
, as $k \to \infty$,

where

$$C(\lbrace F_k^{(1)} \rbrace_k) \equiv \lbrace u ; u |_{F_k^{(1)}} \text{ is continuous for each } k \rbrace.$$

Proof. See [8, Theorem 3.1.2].

Proof of Theorem 1. By the condition (A.3), $\operatorname{Cap}(N) = 0$. So there is an increasing sequence of closed subsets $\{F_k^{(2)}\}_k$ of X such that

$$N \subset \bigcap_{k=1}^{\infty} (X \setminus F_k^{(2)}),$$

and

$$\operatorname{Cap}(X \setminus F_k^{(2)}) \to 0$$
, as $k \to \infty$.

By the condition (A.1), there is an increasing sequence of compact subsets $F_k^{(3)}$ of X such that

$$\operatorname{Cap}(X \setminus F_k^{(3)}) \to 0$$
, as $k \to \infty$.

By Lemma 5, there is an increasing sequence of closed subsets $F_{k}^{(1)}$ of X such that

$$\mathscr{H} \subset C(\{F_k^{(1)}\}_k),$$

 $\operatorname{Cap}(X \setminus F_k^{(1)}) \to 0, \text{ as } k \to \infty.$

Now we set

$$F_k \equiv F_k^{(1)} \cap F_k^{(2)} \cap F_k^{(3)}.$$

Then $\{F_k\}_{k=1}^{\infty}$ is an increasing sequence of compact sets such that

$$Cap(X \setminus F_k) \to 0$$
, as $k \to \infty$.

We have this by subadditivity of the Choquet capacity
$$\operatorname{Cap}(X \setminus F_k) \leq \operatorname{Cap}(X \setminus F_k^{(1)}) + \operatorname{Cap}(X \setminus F_k^{(2)}) + \operatorname{Cap}(X \setminus F_k^{(3)}) \to 0,$$
 as $k \to \infty$.

For each compact subset $K \subseteq X$, we set

$$K_k \equiv K \cap F_k$$

and

$$G_k^l \equiv \left\{ x \in X \mid \rho(x, K_k) < \frac{1}{l} \right\}, \quad l \in N.$$

For a fixed $k \in N$, $G_k^l \cap F_k$ is an open set and K_k is a closed set with respect to the relative topology in F_k . By Urysohn's lemma, there is a continuous function g_k^l defined on F_k such that

$$0 \le g_k^i \le 1, \quad \text{on } F_k,$$

$$g_k^i(x) = 1, \quad x \in K_k,$$

$$g_k^i(x) = 0, \quad x \in F_k \setminus G_k^i.$$

Since \mathcal{H} is a **Q**-algebra and separates the points of $X \setminus N$ by Lemma 4, $\mathcal{H}|_{F_{\mathbf{p}}}$ is also a Q-algebra and separates the points of F_k . Therefore by the Stone-Weierstrass theorem, $\mathcal{H}|_{F_k}$ is dense in $C(F_k)$ with respect to the uniform norm. We can choose $h_k^l \subseteq \mathcal{H}$ such that

$$\|g_k^l - h_k^l\|_{F_k}\|_{\infty} < \frac{1}{4}.$$

We set

$$f_k^l \equiv 0 \vee \left(\left(2h_k^l - \frac{1}{2}\right) \wedge 1\right).$$

Then f_k^l is contained in \mathcal{H} , and has the following properties:

$$0 \le f_k^l \le 1, \quad \text{on } X,$$

$$f_k^l(x) = 1, \quad x \in K_k,$$

$$f_k^l(x) = 0, \quad x \in F_k \setminus G_k^l.$$

We consider the sequence $\{f_k^l\}_{k,l}$. If x is contained in $K \cap (\bigcup_{k=1}^{\infty} F_k)$, then there is a number $k_0 \in N$ such that the K_k contain x for all $k_0 > L$. Therefore, for all $k > k_0$ and all l, $f_k^l(x) = 1$. On the other hand, if x is contained in $K^c \cap (\bigcup_{k=1}^{\infty} F_k)$, then we can choose $N \in \mathbb{N}$ such that

$$x
otin \bigcup_{k=1}^{\infty} G_k^l$$
, for $l > N$,

$$x \in F_k$$
, for $k > N$.

Therefore, for all k, l > N, $f_k^l(x) = 0$. Thus, if $x \in \bigcup_{k=1}^{\infty} F_k$, then $f_k^l(x) \to I_K$, as k, $l \to \infty$. Since $\operatorname{Cap}(X \setminus \bigcup_{k=1}^{\infty} F_k) = 0$, we have $f_k^l \to I_K$, q.e. in X.

$$f_k^l \to I_K$$
, q.e. in X .

The last assertion of Theorem 1 follows from the fact that the measures on a Lusinian space are characterized by compact sets [6, III, Theorem 38].

Remark. By the same method of Theorem 1, we can also show the following statement (cf. [12] Lemma 1.3).

Let E_i i = 1, 2 be disjoint closed sets in X. Then there is a sequence of functions $\{u_n\}_{n=1}^{\infty} \subset \mathcal{F}_{cbt}$ such that $0 \leq u_n \leq u_{n+1} \leq 1$,

$$u_n = 0$$
 q.e. on E_1 and $u_n \rightarrow 1$ q.e. on E_2 ,

where \mathcal{F}_{cpt} is a family of the function \mathcal{F} with compact support.

In fact, we can construct a sequence of functions $\{f_k\}_{k=1}^{\infty} \subset \mathcal{H}$ having the following properties, $0 \leq f_k \leq 1$ on X, $f_k(x) = 1$ for $x \in F_k \cap E_1$, $f_k(x) = 0$ for $x \in F_k \cap E_2$, where $\{F_k\}_{k=1}^{\infty}$ is the sequence of the compact sets as taken in the proof of Theorem 1. Now we set $u_n = \max\{1 - f_j \lor e_{X \setminus F_j}; 1 \leq j \leq n\}$, where $e_{X \setminus F_n}$ is an equilibrium potential of $X \setminus F_n$. Then this yields desired statement.

4. Application of Theorem 1. Shigekawa and Taniguchi [12] used the Gel'fand compactification to show the uniqueness statement for a measure charging no set of zero capacity. But they showed, without using any type of compactification, the following Beurling-Deny formula under the condition (A.1, 2', 3, 4). Based on Theorem 1, we can show it in the same as in [12] under the condition (A.1-4).

A finite positive Borel Measure μ on X charging no set of zero capacity is said to be *of finite energy integral* if there is a constant C > 0 such that

$$\int_X |f| \, d\mu \le C \sqrt{\mathcal{E}_1(f,f)} \quad \text{for } f \in b\mathcal{F}_0.$$

Theorem 2. Let $(\mathcal{E}, \mathcal{F})$ be a Dirichlet form which satisfies (A.1-4). Then \mathcal{E} can be expressed for f, $g \in \mathcal{F}$ as follows. (4.1)

$$\begin{split} \mathscr{E}(f,g) &= \mathscr{E}^{(c)}(f,g) + \int_{(X\times X)\setminus D} (f(x) - f(y))(g(x) - g(y))J(dx \times dy) \\ &+ \int_{X} f(x)g(x)k(dx). \end{split}$$

Here $\mathscr{E}^{(c)}$ is a symmetric form with local property, J is a σ -finite symmetric measure on $(X \times X) \setminus D$, with D the diagonal set of $X \times X$, satisfying $J(X \times A) = 0$ if $\operatorname{Cap}(A) = 0$, and k is a finite positive Borel measure of finite energy integral. These $\mathscr{E}^{(c)}$, J and k are determined uniquely by \mathscr{E} .

These are some other facts which can be shown with Theorem 1. Under the condition (A.1-4) there exists an associated Hunt process, and a hitting distribution is a version of a equilibrium potential. It can be seen by the Hunt approximation theorem that a nearly Borel, finely open and m-negligible set is exceptional and a set is exceptional if and only of it is included in a properly exceptional set. We can also show that if u is quasi-continuous, then u is finely continuous q.e.; conversely, if u is finely continuous q.e. and $u \in \mathcal{F}$. then u is quasi-continuous. Moreover, by Remark 1, we also see the following two conditions are equivalent to each other: (1) (\mathcal{E} , \mathcal{F}) possesses the local property; (2) the associated Hunt process have continuous sample paths with probability 1 (cf. [12, Theorem 6.1]).

Acknowledgments. The author would like to thank Professor T. Ichinose and Professor S. Nakao for many significant suggestions and Professor P. J. Fitzsimmons for a private communication.

References

- [1] S. Albeverio and Z. M. Ma: Necessary and sufficient conditions for the existence of *m*-perfect processes associated with Dirichlet forms. Sém. Probabilities XXV, Lect. Notes in Math., vol. 1485, Springer, Berlin (1991).
- [2] —: Characterization of Dirichlet forms associated with Hunt processes.

 Bochum Preprint (1991)(to appear in Proc. Swansea Conf. Stochastic Analysis (ed. A. Truman)).
- [3] S. Albeverio, Z. M. Ma and M. Röckner: A Beurling-Deny type structure theorem for Dirichlet forms on general state space. Ideas and Methods in Mathematical Analysis, Stochastics, and Applications (S. Albeverio *et al.*). Cambridge University Press, pp. 115–123.
- [4] S. Albeverio and M. Röckner: Classical Dirichlet forms on topological vector spaces — the construction of the associated diffusion process. Prob. Theory and Rel. Fieds, 83, 405-434 (1989).
- [5] R. M. Blumenthal and R. K. Getoor: Markov Processes and Potential Theory. Academic Press, New York (1968).
- [6] C. Dellacherie and P. A. Meyer: Probabilities and Potential. North-Holland, Amsterdam, Tokyo (1978).
- [7] P. J. Fitzsimmons: Private communication.
- [8] M. Fukushima: Dirichlet Forms and Markov Processes. North-Holland, Amsterdam; Kodansha, Tokyo (1980).
- [9] S. Kusuoka: Dirichlet forms and diffusion processes on Banach spaces. J. Fac. Sci. Univ. Tokyo, Sec. 1A, 29, 79-95 (1982).
- [10] B. Schmuland: An alternative compactification for classical Dirichlet forms on topological vector spaces. Stochastics, 33, 75-90 (1990).
- [11] M. J. Sharpe: General Theory of Markov Processes. Academic Press, New York (1988).
- [12] I. Shigekawa and S. Taniguchi: Dirichlet forms on separable metric spaces (to appear in Japan-U.S.S.R. Symposium Proceedings 1991).