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1. Introduetion. Let be a real separable Hilbert space which is

densely and continuously imbedded in another real separable Hilbert space
g. A correspondence (= multi-valued mapping) F:[0, T] x B- g) is

assumed to be given. We consider the differential inclusion:
F(t, x), x(0) 0.

Maruyama [7] examined a differential inclusion of this type in the case
3 g and established the existence of solutions under rather restrictive

assumptions. In particular the following two assumptions are not satisfied in

many important situations:
(i) the correspondence x F(t, x) is upper hemi-continuous with

respect to the weak topology for and the strong topology for , and

(ii) the correspondence F is convex-valued.
The first assumption can be weakened to:
(i’) the correspondence x F(t, x) is upper hemi-continuous with re-

spect to the weak topologies for both of 3 and g,
under the additional assumption that/’ is bounded. (See section 6.)

However it seems quite hard to drop the second assumption without any
serious change of the proof. In fact, Maruyama [8] exemplified the importance
of assumption (ii) in deducing several properties of differential inclusions
including the existence of solutions.

In this paper, we shall show the way leading to the existence without

having recourse to assumption (ii). Examples will be shown in section 5.
2. Assumptions. We begin by specifying some assumptions imposed

on the correspondence F: [0, T] x -- g. Denote by w (resp. Ypw) the
space B (resp. p) endowed with the weak topology.

Assumption 1. The set 1" (t, x) c g is nonempty and weakly compact for
all (t, x) [0, T] x .

Assumption 2. For each fixed t [0, T] the correspondence x -F(t, x) is continuous with respect to the weak topologies for both of and

i.e. I satisfies both the upper hemi-continuity and the lower hemi-continuity
in x. (For the concept of "continuity" of a correspondence, see Aubin-
Frankowska [1] Chap. 1.)

Assumption 3. For each fixed x , the correspondence t -F(t, x) is measurable in the sense that the weak inverse image F-(U)=
{t e [0, T] F(t, x) f U 4= 0 } is measurable for all open sets U in g and

for each fixed x . (For the concept of "measurability" of a correspondence,
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see Aubin-Frankowska [1] Chap. 8.)
Assumption 4. There exists M > 0 such that

sup{ll y II: y / (t, x), x , t [0, T]}

_
M.

3. Notations and lemmas. Let B (resp. B) be the closed ball in !
(resp. (C)) with center at zero and radius MT (resp. /14). Since both i and Y3
are real separable Hilbert spaces, the topology of the closed ball B (resp.
B(C)) induced by the weak topology of ! (resp. Y3) is completely metrizable.
Let us denote such a metric by d (resp. d(C)). Without loss of generality, we
may assume that d satisfies the condition:
(1) d(x, x’) [Ix-x’ll for everyx, x’ B,
where [[" I[ is the usual norm in i. We denote by h the Hausdorff distance
defined, for any subsets B, B’ of B# by

h(B, B’) Max{sup inf d(x, y), sup inf d(x, y)}.
xB yB x-B yB

Let us introduce the function r/: [0, T] R+ -- R+, called the modulus of
continuity of/, defined by

v(t, r) Max{h(F(t, x), F(t, x’)) x, x" B, d(x, x’)

_
r}.

Filippov’s measurable implicit function theorem implies that is measurable
in t for each fixed r, and from Berge’s maximum theorem we deduce that is
continuous in r for each fixed t.

Let ----([0, T], B)) be the space of all measurable functions of
[0, T] into B(C). Let d be the metric on defined by

d (, v) de((t), v(t)) dr; , v .
Lemm 1. The metric space (, d) is complete.

Proof. Let {,,} be a Cauchy sequence in . Then there exists a sub-
sequence (,,(), (1) < (2) < < (k) < ", such that

g{t [0, T]’d,(,/,(t), ,(t)) > 1/2} < 1/2,
where p is the usual Lebesgue measure on [0, T]. If we set E {t:
ds(,(+(t), ,((t)) > 1/2} and E limsup E, then it is easy to check

that g(E) 0. Furthermore if t E, then there exists ko > 0 such that

d(u(+,(t), u()(t))

_
1/2 for all k

_
k0.

Therefore, for t E, (un()(t)} constitutes a Cauchy sequence in B#.
We denote the limit of un()(t) by u(t) e B9 and set

u(t) if tEu*(t)
0 if t E.

Then we obtain d (un, u*) --* 0 as n--* co since

d(u, u*)

_
d(un, u()) + d(u,(), u*),

the right hand side of which tends to zero as n and n(k) tend to oo. Q.E.D.
Let r be a decreasing sequence of real numbers tending to 0. Since B

is a weakly compact set which is metrizable, it is totally bounded. Hence
there exists, for each r, a finite subset M {a, a,--’,a.()} of Bs satis-
fying:

n(i)

(2) B= (3 (xB:d(x,a) < r/4).
j--1
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We define a sequence $ic1 x . x i(i= 1,2,’-’) of sets

inductively. For i 1, put $1 ’. Now suppose that i-1 has been defined
and put

$i {b" b (a, a, -’’, a-, a), (a, -,ai-) $_,
a Mi, and d(ai-1, a i) - ri_}.

Now we assign, for each b (a, ’’’, ai), an integrable function u" [0,
T] -- @ which satisfies the following (3) and (4)"
(3) u(t) U<a,...,a’)(t) F(t, a i) a.e. in [0, T],
(4) d,(u(t), U<a,...,a’-)(t) -- 7(t, ri_l) a.e. in [0, T] (i > 1).
The existence of such a function u can be shown by an inductive reasoning

as follows. The intersection

)A (t) =-- F (t, a f3 {c d (3c "Ua,...,a,- (t))

_
7 (t, ri_) }

is not empty for each t [0, T] since d(a-1, a)

_
r_x. Furthermore the

correspondence t- A (t) is closed-valued and measurable, thus it has a

measurable selection u(t), which is integrable by Assumption 4.
Let h be a decreasing sequence of real numbers tending to 0 such that

T/h, and each h/hi+ are integers. We define i to be the set of functions
c’[0, T]--* i such that each of the component function a(t)(1

_
j

_
i)

of c(t)= (a(t), ,ai(t)) is constant on intervals [sh, (s + 1)h) for
each integer s O,1,’’’,T/h- 1. It is clear from Assumption 4 and (3)
that

u(t)(t) Bfor t [0, T]. for eachc i, i-- 1,2,"’.
Conside now the set i- {u" [0, T]-- @;u- u fo some c

Since i is finite and u is uniquely defined for each b i, //i is finite.
We denote U
Lemma 2. If

(5) (t, r) dt < + oo,
.=

then is sequentially compact in (f, d).
Proof. Since is complete by lemma 1, it is sufficient to prove that

is totally bounded. Take an arbitrary s > 0. By (5), we can take m N
such that

(6) (t, r) dt < s.
1=m

We shall prove that for each u m+p, P >- 1, there exists u’ m

such that d(u, u’)

_
t.

If u(t) U<al<t),...,am<t),...,a,/p<t)>(t), then we put u’(t) U<al<t),...,a,<t)>(t).
It is clear that u’ m. We have"

d(C) (u(a(t),...,a,n+p(t>) (t) ,,,,., (t))_
W, d(u,,,...,/, (t) u,,,,...,,/,-,, (t)).

Using (4) and (6), we obtain

d (, ’)

_
r/(t, r+i_) - s. O.E.D.
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4. Main theorem. Theorem 1. Under Assumptions 1, 2, 3, and 4, there
exists an absolutely continuous function x’[0, T] with x(O) --0 such
that

c(t) F (t, x (t)) for a.e. t in [0, T].
Proof. We construct a sequence {Xn(t)} of approximate solutions which

satisfies the following four conditions"
xn [0, T] -- is absolutely continuous.

(ii) x.(O) O.
(iii) There exists c . such that

:(t) uc)(t) for each t [0, T].
(iv) If c (t) (a(t), a(t),-’- ,a(t)), then

d(x(t), a(t))

_
r for t [0, T].

For this purpose, let us assume that {r} and {h} defined in Section 3
also satisfy (5) and the following"

(7) r+ < r/4, n 1,2,-.-,
(8) h.M < r./4, n 1,2,’-’.

To construct such a function x., we need to specify c(t): (a(t), ",

a’(t)) so that it satisfies the above mentioned conditions (i)-(iv). We use the
induction argument on the partition of [0, T] of length h

For t [0, h.) we put
a(t) a constant,

where a 1 and d(a, O)

_
r/4, 1,2,.",n. Such a exists by (2).

Suppose that c(t) has been defined for t [0, s h], 1

_
s T/h.

For each fixed i

_
n, we define a(t) for t Is h., (s + 1)h.) by"

Case 1. s hn =/= p h for each integer p. Then
a(t) a((s-- 1)h.) for t [sh., (s+ 1)h.).

Case 2. There is an integer p such that s kn P k. Then
a(t) a= constant for t Is hn, (s + 1)h.),

where a and d(a, x.(s h))

_
r/4. ,Such a exists by (2).

It is easy to check that for each i and each integer p T/h, a(t) is
constant on [p h, (p 4- 1) h,) and
(9) d(x(s h), a(s h)) < r/2, i 1,2,---,n.
The inequality (9) in the first case follows from (1) and (8). From (7) and (9),
we see that the function c takes its values in . Therefore c n. (iv) fol-
lows easily from (1), (8), and (9).

By definition, each x. is an absolutely continuous function such that

n 0//. Thus by Lemma 2, {9n} has a subsequence, without changing nota-
tions for the sake of simplicity, which converges in (, d) to a measurable
function v . Thus {:n} has a subsequence, again by using the same nota-
tion, such that
(10) 5(t)--* v(t) weakly a.e. t
Furthermore, when we consider each xn as an element of the Sobolev space
t3’([0, T], ), there exists a subsequence, again without changing nota-
tions, and some x* ’([0, T], ) such that
(11) xn---* x* uniformly in * on [0, T], and
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(12) a--* a* weakly in ([0, T], 3),
thanks to Maruyama’s convergence theorem (Maruyama [7], Theorem 1). By
(12) and Mazur’s theorem, there exists a sequence of convex combinations

= c +i} which converges strongly to &* in . Hence, by taking a
subsequence, say {z}, we get"

z(t) 5:*(t) a.e. t [0, T] in
If we consider each z,(t) and a*(t) as a point in g, we get"

z,(t) *(t) a.e. t [0, T] in g.
Thus we conclude, by virtue of (10), that
(13) a*(t) v(t) a.e. on [0, T].

To prove that x* is a solution, we note that"
d,(:k.(t), F(t, x.(t)))

d9 (ua,t,...,.t (t), F (t, x. (t)))_
de, (uot,...,.t, (t), F (t, a. (t)))

+ h(F(t, a.(t)), F(t, x.(t))).
From (3), the first component of the above sum is equal to zero. Thus,

from (iv) in this proof, we have the inequality

d (a. (t), F (t, x. (t)))

_
r/(t, r.),

which, together with (10), (11), (13) and the continuity of F in x, implies

d,(:i:*(t), F(t, x*(t))) 0 a.e. t in [0, T].
Hence

a* (t) F (t, x* (t)) a.e. t in [0, T]. Q.E.D.
5. Examples. In this section, we shall provide some examples. Let 21

be a topological space. One of the problems we have in mind is the following

control problem"
a(t) f (t, x (t), u (t)),
u (t) U (t),

where f [0, T] 3 21---* w is assumed to be measurable in t and con-
tinuous in a: and u, and U" [0, T]---*-* 91 is a compact-valued measurable
correspondence. If we define F [0, T] O---*- by

F (t, :c) { f (t, x, u) u U(t)},
then /" is easily seen to satisfy Assumptions 1, 2, and 3. Finally we shall
give a function which satisfies the weak-weak continuity. Let g" R’’n---* Rn

be a continuous function. We consider the function G ma([0, T], R*)
([0, T], Rn) defined by"

G (x) (t) g (x (t), Dx (t), ,D"- x (t)) x "’.
G is continuous with respect to the weak topologies for both of Bm’ and

by Sobolev’s lemma.
6. Final remarks. We considered, in this paper, a differential inclu-

sion of Filippov’s type defined in a real separable Hilbert space. We are
greatly indebted to Kaezyflski-Oleeh [6] and Maruyama [7] for the methods
embodied in the proof. The key reasoning of the proof is essentially the same
as Kaezyflski-Oleeh, and we owe Maruyama for the treatment of infinite
dimensional spaces.

Maruyama informed me in a private communication the following result,
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the proof of which is essentially the same as Maruyama [7], Theorem 2.
Theorem. Let w be a real separable Hilbert space endowed with the weak

topology. Assume that F [0, T] Y)w-- satisfies the following conditions:

I" is compact-convex-valued.
ii The correspondence x - I" (t, x) is upper hemi-continuous.

(iii) The correspondence t - I" (t, x) is measurable.
(iv) There exists M > 0 such that

sup {]] y ]I:Y F(t, z), t [0, r], z (C)}

_
U.

Then there exists x* 1’2([0, T], Y)) such that
5c*(t) F(t, x*) a.e. in [0, T].
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