8. Certain Differential Operators for Meromorphically p-valent Convex Functions

By Nak Eun Cho*) and Shigeyoshi Owa**)
(Communicated by Shokichi Iyanaga, m. J. A., Jan. 13, 1992)

Abstract: Let $J_{n}(\alpha)$ be the class of functions of the form

$$
f(z)=\frac{a_{-p}}{z^{p}}+\sum_{k=0}^{\infty} a_{k} z^{k} \quad\left(a_{-p} \neq 0, p \in N=\{1,2, \cdots\}\right)
$$

which are regular in the punctured disk $E=\{z: 0<|z|<1\}$ and satisfying

$$
\operatorname{Re}\left\{\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}-(p+1)\right\}<-p \frac{n+\alpha}{n+1} \quad\left(n \in N_{0}=\{0,1,2, \cdots\},|z|<1,0 \leq \alpha<1\right)
$$

where

$$
D^{n} f(z)=\frac{a_{-p}}{z^{p}}+\sum_{m=1}^{\infty}(p+m)^{n} a_{m-1} z^{m-1}
$$

It is proved that $J_{n+1}(\alpha) \subset J_{n}(\alpha)$. Since $J_{0}(\alpha)$ is the class of meromorphically p-valent convex functions of order α, all functions in $J_{n}(\alpha)$ are p-valent convex. Futher properties preserving integrals are considered.

1. Introduction. Let \sum_{p} denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{a_{-p}}{z^{p}}+\sum_{k=0}^{\infty} a_{k} z^{k} \quad\left(a_{-p} \neq 0, p \in N=\{1,2, \cdots\}\right) \tag{1.1}
\end{equation*}
$$

which are regular in the punctured disk $E=\{z: 0<|z|<1\}$. Define

$$
\begin{equation*}
D^{0} f(z)=f(z) \tag{1.2}
\end{equation*}
$$

$$
\begin{align*}
D^{1} f(z) & =\frac{a_{-p}}{z^{p}}+(p+1) a_{0}+(p+2) a_{1} z+(p+3) a_{2} z^{2}+\cdots \tag{1.3}\\
& =\frac{\left(z^{p+1} f(z)\right)^{\prime}}{z^{p}}
\end{align*}
$$

$$
\begin{equation*}
D^{2} f(z)=D\left(D^{1} f(z)\right) \tag{1.4}
\end{equation*}
$$

and for $n=1,2, \cdots$,

$$
\begin{align*}
D^{n} f(z)=D\left(D^{n-1} f(z)\right) & =\frac{a_{-p}}{z^{p}}+\sum_{m=1}^{\infty}(p+m)^{n} a_{m-1} z^{m-1} \tag{1.5}\\
& =\frac{\left(z^{p+1} D^{n-1} f(z)\right)^{\prime}}{z^{p}}
\end{align*}
$$

In this paper, we shall show that a function $f(z)$ in \sum_{p}, which satisfies one of the conditions

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}-(p+1)\right\}<-p \frac{n+\alpha}{n+1}, \quad(z \in U=\{z:|z|<1\}) \tag{1.6}
\end{equation*}
$$

[^0]for some $\alpha(0 \leq \alpha<1)$ and $n \in N_{0}=\{0,1,2, \cdots\}$, is meromorphically p-valent convex in E. More precisely, it is proved that, for the classes $J_{n}(\alpha)$ of functions in \sum_{p} satisfying (1.6),
\[

$$
\begin{equation*}
J_{n+1}(\alpha) \subset J_{n}(\alpha) \tag{1.7}
\end{equation*}
$$

\]

holds. Since $J_{0}(\alpha)$ equals $\sum_{k}(\alpha)$ (the class of meromorphically p-valent convex functions of order α [4]), the convexity of members of $J_{n}(\alpha)$ is a consequence of (1.7). Further for $c>0$, let

$$
\begin{equation*}
F(z)=\frac{c}{c+p} \int_{0}^{z} t^{c+p-1} f(t) d t \tag{1.8}
\end{equation*}
$$

it is shown that $F(z) \in J_{n}(\alpha)$ whenever $f(z) \in J_{n}(\alpha)$. Some known results of Bajpai [1], Goel and Sohi [2] and Uralegaddi and Somanatha [6] are extended.
2. Properties of the class $J_{n}(\alpha)$. In proving our main results (Theorem 1 and Theorem 2 below), we shall need the following lemma due to I. S. Jack [3].

Lemma. Let w be non-constant regular in $U=\{z:|z|<1\}, w(0)=0$. If $|w|$ attains its maximum value on the circle $|z|=r<1$ at z_{0}, we have $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$ where k is a real number, $k \geq 1$.

Theorem 1. $J_{n+1}(\alpha) \subset J_{n}(\alpha)$ for each integer $n \in N_{0}$.
Proof. Let $f(z) \in J_{n+1}(\alpha)$. Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(D^{n+2} f(z)\right)^{\prime}}{\left(D^{n+1} f(z)\right)^{\prime}}-(p+1)\right\}<-p \frac{n+1+\alpha}{n+2} . \tag{2.1}
\end{equation*}
$$

We have to show that (2.1) implies the inequality

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}-(p+1)\right\}<-p \frac{n+\alpha}{n+1} \tag{2.2}
\end{equation*}
$$

Define $w(z)$ in $U=\{z:|z|<1\}$ by

$$
\begin{equation*}
\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}-(p+1)=-p\left[\frac{n+\alpha}{n+1}+\frac{(1-\alpha)(1-w(z))}{(n+1)(1+w(z))}\right] . \tag{2.3}
\end{equation*}
$$

Clearly $w(z)$ is regular and $w(0)=0$. Equation (2.3) may be written as

$$
\begin{equation*}
\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}=\frac{n+1+(n+1+2 p(1-\alpha)) w(z)}{(n+1)(1+w(z))} . \tag{2.4}
\end{equation*}
$$

Logarithmic differentiation of (2.4) yields

$$
\begin{equation*}
\frac{z\left(D^{n+1} f(z)\right)^{\prime \prime}}{\left(D^{n+1} f(z)\right)^{\prime}}-\frac{z\left(D^{n} f(z)\right)^{\prime \prime}}{\left(D^{n} f(z)\right)^{\prime}}=\frac{2 p(1-\alpha) z w^{\prime}(z)}{(1+w(z))(n+1+(n+1+2 p(1-\alpha)) w(z))} \tag{2.5}
\end{equation*}
$$

From the following identity, which is obvious from (1.5),

$$
\begin{equation*}
z\left(D^{n} f(z)\right)^{\prime}=D^{n+1} f(z)-(p+1) D^{n} f(z) \tag{2.6}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
z\left(D^{n} f(z)\right)^{\prime \prime}=\left(D^{n+1} f(z)\right)^{\prime}-(p+2)\left(D^{n} f(z)\right)^{\prime} \tag{2.7}
\end{equation*}
$$

Using the identity (2.7), the equation (2.5) reduces to

$$
\begin{align*}
& \frac{\left(\left(D^{n+2} f(z)\right)^{\prime}\right) /\left(\left(D^{n+1} f(z)\right)^{\prime}\right)-(p+1)+p(n+1+\alpha) /(n+2)}{(1-\alpha) /(n+2)} \tag{2.8}\\
& =p\left[\frac{1}{n+1}-\frac{(n+2)(1-w(z))}{(n+1)(1+w(z))}+\frac{2(n+2) z w^{\prime}(z)}{(1+w(z))(n+1+(n+1+2 p(1-\alpha)) w(z))}\right] .
\end{align*}
$$

We claim that $|w(z)|<1$ in U. For otherwise (by Jack's lemma) there exists z_{0} in U such that
(2.9)

$$
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)
$$

where $\left|w\left(z_{0}\right)\right|=1$ and $k \geq 1$. From (2.8) and (2.9), we obtain
(2.10)

$$
\begin{aligned}
& \text { 10) } \frac{\left(\left(D^{n+2} f\left(z_{0}\right)\right)^{\prime}\right) /\left(\left(D^{n+1} f\left(z_{0}\right)\right)^{\prime}\right)-(p+1)+p(n+1+\alpha) /(n+2)}{(1-\alpha) /(n+2)} \\
& =p\left[\frac{1}{n+1}-\frac{(n+2)\left(1-w\left(z_{0}\right)\right)}{(n+1)\left(1+w\left(z_{0}\right)\right)}+\frac{2 k(n+2) w\left(z_{0}\right)}{\left(1+w\left(z_{0}\right)\right)\left(n+1+(n+1+2 p(1-\alpha)) w\left(z_{0}\right)\right)}\right]
\end{aligned}
$$

Thus
(2.11)

$$
\begin{gathered}
\operatorname{Re}\left\{\frac{\left(\left(D^{n+2} f\left(z_{0}\right)\right)^{\prime}\right) /\left(\left(D^{n+1} f\left(z_{0}\right)\right)^{\prime}\right)-(p+1)+p(n+1+\alpha) /(n+2)}{(1-\alpha) /(n+2)}\right\} \\
\geq p\left[\frac{1}{n+1}+\frac{n+2}{2(n+1+p(1-\alpha))}\right]>0
\end{gathered}
$$

which contradicts (2.1). Hence $|w(z)|<1$ in U and from (2.3) it follows that $f(z) \in J_{n}(\alpha)$.

Theorem 2. Let $f(z) \in \sum_{p}$ satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}-(p+1)\right\}<p\left[-\frac{n+\alpha}{n+1}+\frac{1-\alpha}{2(c(n+1)+p(1-\alpha))}\right](z \in U) \tag{2.12}
\end{equation*}
$$ for a given $n \in N_{0}$ and $c>0$. Then

$$
\begin{equation*}
F(z)=\frac{c}{z^{c+p}} \int_{0}^{z} t^{c+p-1} f(t) d t \tag{2.13}
\end{equation*}
$$

belongs to $J_{n}(\alpha)$.
Proof. From the definition of $F(z)$, we have

$$
\begin{equation*}
z\left(D^{n} F(z)\right)^{\prime}=c D^{n} f(z)-(c+p) D^{n} F(z) \tag{2.14}
\end{equation*}
$$

Using (2.14) and the identity (2.6), the condition (2.12) may be written as

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{\left(\left(D^{n+2} F(z)\right)^{\prime}\right) /\left(\left(D^{n+1} F(z)\right)^{\prime}\right)+(c-1)}{1+(c-1)\left(\left(D^{n} F(z)\right)^{\prime}\right) /\left(\left(D^{n+1} F(z)\right)^{\prime}\right)}-(p+1)\right\} \tag{2.15}\\
& \quad<p\left[-\frac{n+\alpha}{n+1}+\frac{1-\alpha}{2(c(n+1)+p(1-\alpha))}\right]
\end{align*}
$$

We have to prove that (2.15) implies the inequality

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(D^{n+1} F(z)\right)^{\prime}}{\left(D^{n} F(z)\right)^{\prime}}-(p+1)\right\}<-p \frac{n+\alpha}{n+1} \tag{2.16}
\end{equation*}
$$

Define $w(z)$ in U by

$$
\begin{equation*}
\frac{\left(D^{n+1} F(z)\right)^{\prime}}{\left(D^{n} F(z)\right)^{\prime}}-(p+1)=-p\left[\frac{n+\alpha}{n+1}+\frac{(1-\alpha)(1-w(z))}{(n+1)(1+w(z))}\right] . \tag{2.17}
\end{equation*}
$$

Clearly $w(z)$ is regular and $w(0)=0$. The equation (2.17) may be written as

$$
\begin{equation*}
\frac{\left(D^{n+1} F(z)\right)^{\prime}}{\left(D^{n} F(z)\right)^{\prime}}=\frac{n+1+(n+1+2 p(1-\alpha)) w(z)}{(n+1)(1+w(z))} . \tag{2.18}
\end{equation*}
$$

Differentiating (2.18) logarithmically and using (2.7), we obtain
(2.19) $\frac{\left(D^{n+2} F(z)\right)^{\prime}}{\left(D^{n+1} F(z)\right)^{\prime}}-\frac{\left(D^{n+1} F(z)\right)^{\prime}}{\left(D^{n} F(z)\right)^{\prime}}=\frac{2 p(1-\alpha) z w^{\prime}(z)}{(1+w(z))(n+1+(n+1+2 p(1-\alpha)) w(z))}$.

The above equation may be written as

$$
\begin{align*}
& \frac{\left(\left(D^{n+2} F(z)\right)^{\prime}\right) /\left(\left(D^{n+1} F(z)\right)^{\prime}\right)+(c-1)}{1+(c-1)\left(\left(D^{n} F(z)\right)^{\prime}\right) /\left(\left(D^{n+1} F(z)\right)^{\prime}\right)}-(p+1) \tag{2.20}\\
& =\frac{\left(D^{n+1} F(z)\right)^{\prime}}{\left(D^{n} F(z)\right)^{\prime}}-(p+1)+\left[\frac{2 p(1-\alpha) z w^{\prime}(z)}{(1+w(z))(n+1+(n+1+2 p(1-\alpha)) w(z))}\right] \\
& \quad \times\left[\frac{1}{1+(c-1)\left(\left(D^{n} F(z)\right)^{\prime}\right) /\left(\left(D^{n+1} F(z)\right)^{\prime}\right)}\right]
\end{align*}
$$

which, by using (2.17) and (2.18), reduces to

$$
\begin{align*}
& \frac{\left(\left(D^{n+2} F(z)\right)^{\prime}\right) /\left(\left(D^{n+1} F(z)\right)^{\prime}\right)+(c-1)}{1+(c-1)\left(\left(D^{n} F(z)\right)^{\prime}\right) /\left(\left(D^{n+1} F(z)\right)^{\prime}\right)}-(p+1) \tag{2.21}\\
& \quad=-p\left[\frac{n+\alpha}{n+1}+\frac{(1-\alpha)(1-w(z))}{(n+1)(1+w(z))}\right] \\
& \quad+\frac{2 p(1-\alpha) z w^{\prime}(z)}{(1+w(z))(c(n+1)+(c(n+1)+2 p(1-\alpha)) w(z))}
\end{align*}
$$

The remaining part of the proof is similar to that of Theorem 1.
Putting $p=1, a_{-1}=1, n=0$ and $\alpha=0$ in the above Theorem 2 , we obtain the following result by Goel and Sohi [2].

Corollary. If

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{k=0}^{\infty} a_{k} z^{k} \tag{2.22}
\end{equation*}
$$

and satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}<\frac{1}{2(c+1)} \quad(c>0) \tag{2.23}
\end{equation*}
$$

then

$$
\begin{equation*}
F(z)=\frac{c}{z^{c+1}} \int_{0}^{z} t^{c} f(t) d t \tag{2.24}
\end{equation*}
$$

belongs to \sum_{k}.
For $c=1$, the above Corollary extends a result of Bajpai [1].
Theorem 3. If $f(z) \in J_{n}(\alpha)$, then

$$
\begin{equation*}
F(z)=\frac{1}{z^{1+p}} \int_{0}^{z} t^{p} f(t) d t \tag{2.25}
\end{equation*}
$$

belongs to $J_{n}(\alpha)$.
Proof. Since $f(z) \in J_{n}(\alpha)$ satisfies (2.12), the result follows.
Remark. Taking $p=1$ in above theorems, we have the results by Uralegaddi and Somanatha [6].

References

[1] S. K. Bajpai: A note on a class of meromorphic univalent functions. Rev. Roumaine Math. Pures Appl., 22, 295-297 (1977).
[2] R. M. Goel and N. S. Sohi: On a class of meromorphic functions. Glas. Mat., 17, 19-28 (1981).
[3] I. S. Jack: Functions starlike and convex of order α. J. London Math. Soc., 3, 469-474 (1971).
[4] V. Kumar and S. C. Shukla: Certain integrals for classes of p-valent meromorphic functions. Bull. Austral. Math. Soc., 25, 85-97 (1982).
[5] St. Ruscheweyh: New criteria for univalent functions. Proc. Amer. Math. Soc., 49, 109-115 (1975).
[6] B. A. Uralegaddi and C. Somanatha: Certain differential operators for meromorphic functions. Houston J. Math., 17, 279-284 (1991).

[^0]: 1991 Mathematics Subject classification: Primary 30C45.
 *) Department of Applied Mathematics, College of Natural Sciences, National Fisheries University of Pusan, Korea.
 **) Department of Mathematics, Kinki University, Japan.

