66. On the Uniform Distribution Modulo One of Some Log-like Sequences

By Yeu-Hua TOO
Department of Mathematics, National Taiwan Normal University
(Communicated by Shokichi Iyanaga, M. J. A., Nov. 12, 1992)

1. Introduction and main results. Let p_{n} denote the nth prime number. Let f be a polynomial with real coefficients, then it is known that the sequence $\left\{f\left(p_{n}\right)\right\}_{n=1}^{\infty}$ is uniformly distributed modulo one (u.d. mod 1) if and only if f is an irrational polynomial, which means that the polynomial $f(x)-$ $f(0)$ has one irrational coefficient at least. (cf. [3]). Furthermore, it is also known that for any noninteger $\alpha \in(0, \infty)$, the sequence $\left\{p_{n}^{\alpha}\right\}_{n=1}^{\infty}$ is u.d. mod 1 (see e.g. [1], [6]).

On the other hand, Goto and Kano [2] investigated the log-like functions f and obtained sufficient conditions on the function f for which the sequence $\left\{f\left(p_{n}\right)\right\}_{n=1}^{\infty}$ is u.d. mod 1. Unfortunately we could not underestand the proof of main Theorem 2. In this paper we first modify Goto and Kano's results (see Theorems 1 and 2 below) and then give a new result (Theorem 3). The proofs are given in Section 2. (Though our Theorem 1 is essentially the same as Theorem 1 of [2], we give here a proof for completeness' sake.)

Theorem 1. Let $a>0$ and let $f:[a, \infty) \rightarrow(0, \infty)$ be a differentiable function. Assume that $x f^{\prime}(x) \rightarrow \infty$ as $x \rightarrow \infty$ and that for sufficiently large x, $(\log x) f^{\prime}(x)$ is monotone in x. Further, assume that for some $\varepsilon>0$, $f(x)=o\left((\log x)^{\varepsilon}\right)$ as $x \rightarrow \infty$. Then the sequence $\left\{\alpha f\left(p_{n}\right)\right\}_{n=n_{0}}^{\infty}$ is u.d. $\bmod 1$, where $n_{0}=\min \left\{n: p_{n}>a\right\}$ and α is any nonzero real constant.

Theorem 2. Let $a>0$ and let $f:[a, \infty) \rightarrow(0, \infty)$ be a twice differentiable function with $f^{\prime}>0$. Assume that $x^{2} f^{\prime \prime}(x) \rightarrow \infty$ as $x \rightarrow \infty$ and that for sufficiently large $x,(\log x)^{2} f^{\prime \prime}(x)$ is nonincreasing in x. Further, assume that for some $\varepsilon>0, f(x)=o\left((\log x)^{\varepsilon}\right)$ as $x \rightarrow \infty$. Then the sequence $\left\{\alpha f\left(p_{n}\right)\right\}_{n=n_{0}}^{\infty}$ is u.d. $\bmod 1$, where $n_{0}=\min \left\{n: p_{n}>a\right\}$ and α is any nonzero real constant.

Theorem 3. Let $a>0$ and let $f:[a, \infty) \rightarrow(0, \infty)$ be a twice differentiable function with $f^{\prime}>0$. Assume that $x^{2} f^{\prime \prime}(x) \rightarrow-\infty$ as $x \rightarrow \infty$ and that for sufficiently large x, both $(\log x)^{2} f^{\prime \prime}(x)$ and $x(\log x)^{2} f^{\prime \prime}(x)$ are nondecreasing in x. Further, assume that for some $\varepsilon>0, f(x)=$ $o\left((\log x)^{\varepsilon}\right)$ as $x \rightarrow \infty$. Then the sequence $\left\{\alpha f\left(p_{n}\right)\right\}_{n=n_{0}}^{\infty}$ is u.d. $\bmod 1$, where $n_{0}=\min \left\{n: p_{n}>a\right\}$ and α is any nonzero real constant.

Note that Theorem 2 is essentially concerned with a convex function f, while Theorem 3 is concerned with a concave function f. Applying Theorem 3 to the function $f(x)=(\log x)^{\varepsilon}$ we obtain that the sequence $\left\{\left(\log p_{n}\right)^{\varepsilon}\right\}_{n=1}^{\infty}$ is u.d. mod 1 if $\varepsilon>1$.
2. The proofs. We first prove Theorem 3 and then prove Theorems 1
and 2.
Proof of Theorem 3. By Weyl criterion (see e.g. [3] p.4) it suffices to prove that the sequence $\left\{f\left(p_{n}\right)\right\}_{n=n_{0}}^{\infty}$ is u.d. $\bmod 1$.

Since $x^{2} f^{\prime \prime}(x) \rightarrow-\infty$ as $x \rightarrow \infty, f^{\prime \prime}(x)<0$ for sufficiently large x. Without loss of generality, we may assume that for all $x \geq a, f^{\prime \prime}(x)<0$ and that both the functions $(\log x)^{2} f^{\prime \prime}(x)$ and $x(\log x)^{2} f^{\prime \prime}(x)$ are nondecreasing in $x \in[a, \infty)$. To prove the uniform distribution modulo one of the sequence $\left\{f\left(p_{n}\right)\right\}_{n=n_{0}}^{\infty}$, we shall prove that the discrepancy D_{N} of $\left\{f\left(p_{n}\right)\right\}_{n=n_{0}}^{\infty}$ approaches zero as $N \rightarrow \infty$ (see e.g. [3] pp. 88-89). Actually, we shall prove that under the monotonicity conditions on the functions $(\log x)^{2} f^{\prime \prime}(x)$ and $x(\log x)^{2} f^{\prime \prime}(x)$,

$$
\begin{align*}
D_{N}= & O\left(\left\{f\left(p_{N}\right)\left(\log p_{N}\right)^{-\varepsilon}\right\}^{\frac{1}{2}}+\left\{-p_{N}^{2} f^{\prime \prime}\left(p_{N}\right)\right\}^{-\frac{1}{2}}\right. \tag{1}\\
& \left.+\left\{-p_{N}^{2}\left(\log p_{N}\right) f^{\prime \prime}\left(p_{N}\right)\right\}^{-1}\right) \text { as } N \rightarrow \infty
\end{align*}
$$

which approaches zero as $N \rightarrow \infty$ due to the conditions $x^{2} f^{\prime \prime}(x) \rightarrow-\infty$ and $f(x)=o\left((\log x)^{\varepsilon}\right)$ as $x \rightarrow \infty$.

It remains to prove (1). As usual, we shall apply the Erdös-Turán's estimation of the discrepancy D_{N} of $\left\{f\left(\boldsymbol{p}_{n}\right)\right\}_{n=n_{0}}^{N}$: for any positive integer m, there exists an absolute constant C such that

$$
\begin{equation*}
D_{N} \leq C\left(\frac{1}{m}+\sum_{h=n_{0}}^{m} \frac{1}{h}\left|\frac{1}{N} \sum_{n=n_{0}}^{N} e^{2 \pi i h f\left(p_{n}\right)}\right|\right) \tag{2}
\end{equation*}
$$

(see e.g. [3] p.114). The crucial point is to estimate the exponential sum in (2). Denote $q_{0}=\left(p_{n_{0}}+a\right) / 2$ and denote the sum

$$
\begin{equation*}
S_{n_{0}, N, h}=\sum_{n=n_{0}}^{N} e^{2 \pi i h f\left(p_{n}\right)} \tag{3}
\end{equation*}
$$

Then using integration by parts we can rewrite (3) as follows:

$$
\begin{align*}
S_{n_{0}, N, h}= & \pi\left(p_{N}\right) e^{2 \pi i n f\left(p_{N}\right)}-\pi\left(q_{0}\right) e^{2 \pi i n f\left(q_{0}\right)} \tag{4}\\
& -\int_{q_{0}}^{p_{N}}\left(L^{*}(x)+R^{*}(x)\right) d e^{2 \pi i n f(x)}
\end{align*}
$$

where $\pi(x)$ is the number of primes not exceeding $x, \int_{a}^{b}=\int_{(a, b]}^{,}, R^{*}(x)=$ $\pi(x)-L^{*}(x)$ and $L^{*}(x)=\int_{q_{0}}^{x}(\log t)^{-1} d t$ for $x \geq q_{0}$. The last integral in (4) is equal to

$$
\begin{aligned}
& L^{*}\left(p_{N}\right) e^{2 \pi i h f\left(p_{N}\right)}-L^{*}\left(q_{0}\right) e^{2 \pi i h f\left(q_{0}\right)} \\
& -\int_{q_{0}}^{p_{N}}(\log x)^{-1} e^{2 \pi i h f(x)} d x+2 \pi i h \int_{q_{0}}^{p_{N}} R^{*}(x) f^{\prime}(x) e^{2 \pi i h f(x)} d x .
\end{aligned}
$$

Hence the exponential sum defined in (3) can be rewritten as
(5) $S_{n_{0}, N, h}=\left\{R^{*}\left(p_{N}\right) e^{2 \pi i h f\left(p_{N}\right)}-R^{*}\left(q_{0}\right) e^{2 \pi i h f\left(q_{0}\right)}\right\}$

$$
\begin{aligned}
& +\int_{q_{0}}^{p_{N}}(\log x)^{-1} e^{2 \pi i h f(x)} d x-2 \pi i h \int_{q_{0}}^{p_{N}} R^{*}(x) f^{\prime}(x) e^{2 \pi i h f(x)} d x \\
\equiv & I_{1}+I_{2}+I_{3} \text { (say). }
\end{aligned}
$$

We now estimate each $I_{i}, i=1,2,3$. It follows from the Prime Number Theorem of Hadamard and de la Vallée-Poussin (see e.g. [5] chapter 3) that

$$
\begin{equation*}
R^{*}(x)=O\left(x(\log x)^{-k}\right) \text { for each } k>1 \tag{6}
\end{equation*}
$$

Applying (6) to the estimations of I_{1} and I_{3} yields

$$
\begin{equation*}
\left|I_{1}\right|=O\left(p_{N}\left(\log p_{N}\right)^{-(1+\varepsilon)}\right) \text { as } N \rightarrow \infty \tag{7}
\end{equation*}
$$

and, since $f^{\prime}>0$,

$$
\begin{equation*}
\left|I_{3}\right|=O\left(p_{N} h f\left(p_{N}\right)\left(\log p_{N}\right)^{-(1+\varepsilon)}\right) \text { as } N \rightarrow \infty \tag{8}
\end{equation*}
$$

On the other hand, using Lemma 10.3 [7] (p.225) we obtain that

$$
\begin{align*}
\left|I_{2}\right| \leq & \max _{q_{0} \leq x \leq p_{N}}\left(4\left\{(\log x)\left|h f^{\prime \prime}(x)\right|^{\frac{1}{2}}\right\}^{-1}+\left\{x(\log x)^{2}\left|h f^{\prime \prime}(x)\right|\right\}^{-1}\right) \tag{9}\\
= & O\left(\left\{\left(\log p_{N}\right)\left(-h f^{\prime \prime}\left(p_{N}\right)\right)^{\frac{1}{2}}\right\}^{-1}+\left\{p_{N}\left(\log p_{N}\right)^{2}\left(-h f^{\prime \prime}\left(p_{N}\right)\right)\right\}^{-1}\right) \\
& \quad \text { as } N \rightarrow \infty,
\end{align*}
$$

in which the last equality follows from the monotonicity condition on the functions $(\log x)^{2} f^{\prime \prime}(x)$ and $x(\log x)^{2} f^{\prime \prime}(x)$.

Note that $\left|I_{1}\right|=O\left(\left|I_{3}\right|\right)$ as $N \rightarrow \infty$ because $f^{\prime}>0$. Putting (5), (7), (8) and (9) into (2) yields that for any positive integer m,

$$
\begin{align*}
& =O\left(\frac{1}{m}+\frac{1}{N}\left\{\left(\log p_{N}\right)\left(-f^{\prime \prime}\left(p_{N}\right)\right)^{\frac{1}{2}}\right\}^{-1}+\frac{1}{N}\left\{p_{N}\left(\log p_{N}\right)^{2}\left(-f^{\prime \prime}\left(p_{N}\right)\right)\right\}^{-1}\right. \tag{11}\\
& \left.+\frac{m}{N} p_{N} f\left(p_{N}\right)\left(\log p_{N}\right)^{-(1+\varepsilon)}\right) \text { as } N \rightarrow \infty
\end{align*}
$$

Taking $m=\left\{N\left(\log p_{N}\right)^{1+\varepsilon} /\left(p_{N} f\left(p_{N}\right)\right)\right\}^{\frac{1}{2}}$ in (11) and using $N \sim p_{N} / \log p_{N}$ as $N \rightarrow \infty$, we conclude that

$$
\begin{aligned}
D_{N}= & O\left(\left\{f\left(p_{N}\right)\left(\log p_{N}\right)^{-\varepsilon}\right\}^{\frac{1}{2}}+\left\{-p_{N}^{2} f^{\prime \prime}\left(p_{N}\right)\right\}^{-\frac{1}{2}}\right. \\
& \left.+\left\{-p_{N}^{2}\left(\log p_{N}\right) f^{\prime \prime}\left(p_{N}\right)\right\}^{-1}\right) \text { as } N \rightarrow \infty,
\end{aligned}
$$

which is the desired result (1). The proof is complete.
Proof of Theorem 1. Since $x f^{\prime}(x) \rightarrow \infty$ as $x \rightarrow \infty, f^{\prime}(x)>0$ for sufficiently large x. Without loss of generality, we may assume that for all $x \geq$ $a, f^{\prime}(x)>0$ and that the function $(\log x) f^{\prime}(x)$ is monotone in $x \in[a, \infty)$. As before, to prove that the discrepancy D_{N} of $\left\{f\left(p_{n}\right)\right\}_{n=n_{0}}^{\infty}$ approaches zero as $N \rightarrow \infty$, we estimate each I_{i} defined in (5). The estimations of I_{1} and I_{3} are the same as those in (7) and (8), respectively. As to the estimation of I_{2}, we apply Lemma 4.3 of $[7]$ (p. 61) and obtain that

$$
\begin{equation*}
\left|I_{2}\right|=O\left(h^{-1} \max \left\{1,\left[\left(\log p_{N}\right) f^{\prime}\left(p_{N}\right)\right]^{-1}\right\}\right) \text { as } N \rightarrow \infty, \tag{12}
\end{equation*}
$$

because the function $(\log x)^{2} f^{\prime}(x)$ is monotone in x. It follows from (7), (8), (10) and (12) that

$$
\begin{align*}
D_{N}= & O\left(\frac{1}{m}+\max \left\{\frac{1}{N},\left[p_{N} f^{\prime}\left(p_{N}\right)\right]^{-1}\right\}+\frac{m}{N} p_{N} f\left(p_{N}\right)\left(\log p_{N}\right)^{-(1+\varepsilon)}\right) \tag{13}\\
& \text { as } N \rightarrow \infty
\end{align*}
$$

Taking $m=\left\{N\left(\log p_{N}\right)^{1+\varepsilon} /\left(p_{N} f\left(p_{N}\right)\right\}^{\frac{1}{2}}\right.$ in (13) we obtain that

$$
D_{N}=O\left(\left\{f\left(p_{N}\right)\left(\log p_{N}\right)^{-\varepsilon}\right\}^{\frac{1}{2}}+\max \left\{\frac{1}{N},\left[p_{N} f^{\prime}\left(p_{N}\right)\right]^{-1}\right\}\right) \text { as } N \rightarrow \infty,
$$

which approaches zero as $N \rightarrow \infty$ due to the conditions $x f^{\prime}(x) \rightarrow \infty$ and $f(x)=o\left((\log x)^{\varepsilon}\right)$ as $x \rightarrow \infty$. The proof is complete.

Proof of Theorem 2. Since $x^{2} f^{\prime \prime}(x) \rightarrow \infty$ as $x \rightarrow \infty, f^{\prime \prime}(x)>0$ for sufficiently large x. Without loss of generality, we may assume that for all $x \geq a, f^{\prime \prime}(x)>0$ and that the function $(\log x)^{2} f^{\prime \prime}(x)$ is nonincreasing in $x \in[a, \infty)$. As before, we want to prove that the discrepancy D_{N} of $\left\{f\left(p_{n}\right)\right\}_{n=n_{0}}^{N}$ approaches zero as $N \rightarrow \infty$. The estimations of I_{1} and I_{3} defined
in (5) are the same as those in (7) and (8), respectively. As to the estimation of I_{2}, we apply Lemma 10.2 of [7] (p. 225) and obtain that

$$
\begin{align*}
\left|I_{2}\right| & \leq 4 \max _{q_{0} \leq x \leq p_{N}}\left\{(\log x)\left(h f^{\prime \prime}(x)\right)^{\frac{1}{2}}\right\}^{-1} \tag{14}\\
& =4\left\{\left(\log p_{N}\right)\left(h f^{\prime \prime}\left(p_{N}\right)\right)^{\frac{1}{2}}\right\}^{-1}
\end{align*}
$$

in which the last equality follows from the condition that function $(\log x)^{2} f^{\prime \prime}(x)$ is nonincreasing in x. Therefore, it follows from (7), (8), (10) and (14) that

$$
\begin{equation*}
D_{N}=O\left(\frac{1}{m}+\left\{p_{N}^{2} f^{\prime \prime}\left(p_{N}\right)\right\}^{-\frac{1}{2}}+\frac{m}{N} p_{N} f\left(p_{N}\right)\left(\log p_{N}\right)^{-(1+\varepsilon)}\right) \text { as } N \rightarrow \infty \tag{15}
\end{equation*}
$$

Taking $m=\left\{N\left(\log p_{N}\right)^{1+\varepsilon} /\left(p_{N} f\left(p_{N}\right)\right\}^{\frac{1}{2}}\right.$ in (15) we obtain that

$$
D_{N}=O\left(\left\{f\left(p_{N}\right)\left(\log p_{N}\right)^{-\varepsilon}\right\}^{\frac{1}{2}}+\left\{p_{N}^{2} f^{\prime \prime}\left(p_{N}\right)\right\}^{-\frac{1}{2}}\right) \text { as } N \rightarrow \infty
$$

which approaches zero as $N \rightarrow \infty$ due to the condition $x^{2} f^{\prime \prime}(x) \rightarrow \infty$ and $f(x)=o\left((\log x)^{\varepsilon}\right)$ as $N \rightarrow \infty$. The proof is complete.

References

[1] Baker, R. C., and Kolesnik, G.: On the distribution of p^{α} modulo one. J. Reine Angew. Math. , 356, 174-193 (1985).
[2] Goto, K., and Kono, T.: Uniform distribution of some special sequences. Proc. Japan Acad., 61A, 83-86 (1985).
[3] Kuipers, L., and Niederreiter, H.: Uniform Distribution of Sequences. John Wiley, New York (1974).
[4] Rhin, G.: Sur la répartition modulo 1 des suites $f(p)$. Acta Arith., 23, 217-248 (1973).
[5] Titchmarsh, E. C.: The Theory of the Riemann Zeta-Function (revised by D. R. Heath-Brown). Clarendon Press, Oxford (1986).
[6] Tolev, D. I.: On the simultaneous distribution of the fractional parts of different powers of prime numbers. J. Number Theory, 37, 298-306 (1991).
[7] Zygmund, A.: Trigonometric Series. vol. 1, Cambridge Univ. Press, London (1986).

