43. Some Remarks on the Fifth Painlevé Equation on the Positive Real Axis

By Shun Shimomura
Department of Mathematics, Faculty of Science and Technology, Keio University
(Communicated by Kunihiko Kodaira, M. J. A., Sept. 14, 1992)

Consider an equation of the form
(V) $y^{\prime \prime}=\left(\frac{1}{2 y}+\frac{1}{y-1}\right) y^{\prime 2}-\frac{y^{\prime}}{x}+\frac{\alpha}{x^{2}}(y-1)^{2} y+\frac{\gamma y}{x}-\frac{\delta y(y+1)}{y-1}$
(${ }^{\prime}=d / d x$) on the positive real axis $x>0$, where α, γ and δ are real constants. This is a special case of the fifth Painlevé equation. If $\delta>0$, equation (V) admits a one-parameter family of solutions $\{Y(a, x) ; a \in \boldsymbol{R}\}$ satisfying $Y(a, x) \simeq a e^{-\sqrt{2 \delta} x} x^{-\gamma / \sqrt{2 \delta}-1}$ as $x \rightarrow+\infty$. Furthermore any real-valued solution $\varphi(x)$ satisfying $\varphi(x) \rightarrow 0$ as $x \rightarrow+\infty$ is written in the form $\varphi(x)=Y\left(a_{0}, x\right)$, where a_{0} is some real constant (cf. [1]). In this note we show the existence of families of solutions with analogous properties near the regular singular point $x=0$.

1. We treat the following equations equivalent to (V).

Proposition ([1; Proposition 2.2]). By $y=\tanh ^{2} u$, equation (V) is changed into
(E.0) $\quad x\left(x u^{\prime}\right)^{\prime}=\frac{\alpha}{2} \tanh u \cosh ^{-2} u+\frac{\gamma}{4} x \sinh 2 u+\frac{\delta}{8} x^{2} \sinh 4 u$
and, by $y=-\tan ^{2} u$, equation (V) is changed into
(E. -) $\quad x\left(x u^{\prime}\right)^{\prime}=\frac{\alpha}{2} \tan u \cos ^{-2} u+\frac{\gamma}{4} x \sin 2 u+\frac{\delta}{8} x^{2} \sin 4 u$.

We obtain a one-parameter family of solutions near $x=0$.
Theorem 1. Assume that $\alpha>0$. Then, for an arbitrary positive constant C_{0}, equation (V) admits a family of real-valued solutions $\left\{Y_{0}(c, x)\right.$; $\left.-C_{0}<c<C_{0}\right\}$ satisfying

$$
\begin{gathered}
Y_{0}(c, x)=c x^{\sqrt{2 \alpha}}\left(1+O\left(x+|c| x^{\sqrt{2 \alpha}}\right)\right) \\
(d / d x) Y_{0}(c, x)=\sqrt{2 \alpha} c x^{\sqrt{2 \alpha}-1}\left(1+O\left(x+|c| x^{\sqrt{2 \alpha}}\right)\right)
\end{gathered}
$$

on the interval $0<x<r_{0}$, where $r_{0}=r_{0}\left(C_{0}\right)$ is a sufficiently small positive constant.

Proof. Equation (E.0) is written in the form

$$
\begin{equation*}
x\left(x u^{\prime}\right)^{\prime}=u\left(\frac{\alpha}{2}+F_{0}(x, u)\right) \tag{1}
\end{equation*}
$$

where $F_{0}(x, u)=O\left(x+u^{2}\right)$ for $|u|<1,0<x<1$. By $u=x^{\sqrt{\alpha / 2}} w$ equation (1) is changed into

$$
\begin{equation*}
x\left(x w^{\prime}\right)^{\prime}+\sqrt{2 \alpha} x w^{\prime}=w F(x, w) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
F(x, w)=O\left(x+x^{\sqrt{2 \alpha}} w^{2}\right) \tag{3}
\end{equation*}
$$

for $|w|<x^{-\sqrt{\alpha / 2}}, 0<x<1$. Consider a system of integral equations of the
form

$$
\left\{\begin{array}{l}
w(x)=\kappa+\frac{1}{\sqrt{2 \alpha}} \int_{0}^{x} \frac{1}{\xi}\left(1-\left(\frac{\xi}{x}\right)^{\sqrt{2 \alpha}}\right) F(\xi, w(\xi)) w(\xi) d \xi \tag{4}\\
x w^{\prime}(x)=\int_{0}^{x} \frac{1}{\xi}\left(\frac{\xi}{x}\right)^{\sqrt{2 \alpha}} F(\xi, w(\xi)) w(\xi) d \xi
\end{array}\right.
$$

with an arbitrary real constant κ, of which the solutions satisfy equation (2). Let K be an arbitrary positive constant. By the method of successive approximation, we can verify that, if $|\kappa|<K$, equation (4) possesses a solution $w(\kappa, x)$ satisfying

$$
\left\{\begin{array}{l}
w(\kappa, x)=\kappa\left(1+O\left(x+\kappa^{2} x^{\sqrt{2 \alpha}}\right)\right), \tag{5}\\
\left.x(d / d x) w(\kappa, x)=\kappa O\left(x+\kappa^{2} x^{\sqrt{2 \alpha}}\right)\right)
\end{array}\right.
$$

for $0<x<x_{0}$, where $x_{0}=x_{0}(K)$ is a sufficiently small positive constant. Putting $Y_{0}(c, x)=\tanh ^{2}\left(x^{\sqrt{\alpha / 2}} w(\kappa, x)\right)$ and $\mathrm{c}=\kappa^{2}$, we obtain a family of solutions $\left\{Y_{0}(c, x) ; 0 \leq c<C_{0}\right\}$ of (V). In a similar way, using (E. -), we obtain the family for $-C_{0}<c \leq 0$.

Theorem 2. Assume that $\alpha>0$. If $\sigma(x)$ is a real-valued solution of equation (V) satisfying $\sigma(x) \rightarrow 0$ as $x \rightarrow+0$, then $\sigma(x)$ is expressed as $\sigma(x)$ $=Y_{0}\left(c_{0}, x\right)$, where c_{0} is some real constant.

Proof. Since a zero of $\sigma(x)$ is double (cf. [1; Lemma 5.1]), the solution $\sigma(x)$ satisfies either $\sigma(x) \geq 0$ or $\sigma(x) \leq 0$ for $x>0$. We only prove the assertion in case $\sigma(x) \geq 0$, because, if $\sigma(x) \leq 0$, using (E. -), we can prove in a similar way. Let $u=\phi(x)(\not \equiv 0)$ be a solution of (E.0) such that $\tanh ^{2} \psi(x)=\sigma(x)$ and $\phi(x) \rightarrow 0$ as $x \rightarrow+0$. It is sufficient to show that $\phi(x)$ can be expressed as $\psi(x)=x^{\sqrt{\alpha / 2}} w\left(\kappa_{0}, x\right)$ (cf. (5)) with some real constant κ_{0}. Substituting $\psi(x)$ into (1) and putting $x=e^{-t}, \rho(t)=$ $t^{-1 / 2} \phi\left(e^{-t}\right)$, we have

$$
\begin{equation*}
\rho^{\prime \prime}(t)+t^{-1} \rho^{\prime}(t)=\left(\frac{\alpha}{2}+F_{1}(t)\right) \rho(t) \tag{6}
\end{equation*}
$$

where $F_{1}(t)=(1 / 4) t^{-2}+F_{0}\left(e^{-t}, \psi\left(e^{-t}\right)\right)$. Since $F_{1}(t) \rightarrow 0$ as $t \rightarrow+\infty$ (i.e. $x \rightarrow+0$), we can take a sufficiently large positive constant T_{0} such that, for $t>T_{0}$,

$$
\begin{gather*}
|\rho(t)|<1 \tag{7}\\
t^{-1}\left(t \rho^{\prime}(t)\right)^{\prime} \rho(t)^{-1} \geq(\sqrt{\alpha / 2}-\varepsilon)^{2},
\end{gather*}
$$

where $\varepsilon=\min \{1 / 3, \sqrt{2 \alpha} / 7\}$. Then we obtain

$$
\begin{equation*}
\rho(t)=O(\exp (-(\sqrt{\alpha / 2}-\varepsilon) t)) \tag{9}
\end{equation*}
$$

as $t \rightarrow+\infty$, namely

$$
\psi(x)=O\left(x^{\sqrt{\alpha / 2}-\varepsilon}(\log x)^{1 / 2}\right)=O\left(x^{\sqrt{\alpha / 2}-2 \varepsilon}\right)
$$

as $x \rightarrow+0$. Estimate (9) can be derived in exactly the same way as in the proof of [1; Lemma 4.3]. In place of (3.1), (4.11) and (4.12) in [1], we use (6), (7) and (8) respectively. Since $\Psi(x)=x^{-\sqrt{\alpha / 2}} \psi(x)$ satisfies equation (2), we have, for some complex constants C_{1} and C_{2},

$$
\begin{aligned}
& \Psi(x)-C_{1}-C_{2} x^{-\sqrt{2 \alpha}} \\
& =V(x):=\frac{1}{\sqrt{2 \alpha}} \int_{0}^{x} \frac{1}{\xi}\left(1-\left(\frac{\xi}{x}\right)^{\sqrt{2 \alpha}}\right) F(\xi, \Psi(\xi)) \Psi(\xi) d \xi
\end{aligned}
$$

Using (3) and the estimate $\Psi(x)=O\left(x^{-2 \varepsilon}\right)$, we have $V(x)=O\left(x^{\varepsilon^{\prime}}\right)$ as
$x \rightarrow+0$, where $\varepsilon^{\prime}=\min \{1-2 \varepsilon, \sqrt{2 \alpha}-6 \varepsilon\}>0$. This yields $C_{1} x^{2 \varepsilon}+$ $C_{2} x^{2 \varepsilon-\sqrt{2 \alpha}}=O(1)$ as $x \rightarrow+0$, from which we derive $C_{2}=0$. Therefore $\Psi(x)=C_{1}+V(x)$, where C_{1} is a real constant. This implies that $\Psi(x)$ satisfies system (4) with $\kappa=C_{1}$, and that $\psi(x)$ can be expressed as $\psi(x)=$ $x^{\sqrt{\alpha / 2}} w\left(C_{1}, x\right)$ with some real constant C_{1}. Thus the proof is completed.
2. In case $\alpha=0$, we have the following.

Theorem 3. Assume that $\alpha=0$. Then, for every $c \in \boldsymbol{R}-\{0\}^{\cup}\{1\}$, equation (V) admits a solution $y_{0}(c, x)$ satisfying

$$
\begin{aligned}
& y_{0}(c, x)=c+O(x) \\
& (d / d x) y_{0}(c, x)=O(1)
\end{aligned}
$$

as $x \rightarrow+0$. Furthermore the solution $y_{0}(c, x)$ is a unique solution approaching c as $x \rightarrow+0$.

Proof. Assume that $0<c<1$. To prove the existence of the solution $y_{0}(c, x)$, it is sufficient to show that equation (E.0) admits a solution $v(C, x)$ satisfying

$$
\begin{equation*}
v(C, x)=C+O(x), \quad v^{\prime}(C, x)=O(1) \tag{10}
\end{equation*}
$$

as $x \rightarrow+0$, where $C=(1 / 2) \log ((1+\sqrt{c}) /(1-\sqrt{c}))\left(\right.$ i.e. $\left.c=\tanh ^{2} C\right)$. Equation (E.0) can be written in the form
(11) $\quad\left(x u^{\prime}\right)^{\prime}=u G(x, u), \quad G(x, u)=O(1)$,
if $|u-C|<1,0<x<1$. Consider a system of integral equations of the form

$$
\left\{\begin{array}{l}
v(x)=C+\int_{0}^{x} \frac{1}{\xi} \int_{0}^{\xi} G(t, v(t)) v(t) d t d \xi \tag{12}\\
v^{\prime}(x)=\frac{1}{x} \int_{0}^{x} G(t, v(t)) v(t) d t
\end{array}\right.
$$

for $0<x<1$, of which the solutions satisfy equation (11). By the method of successive approximation we can prove that equation (12) admits a solution $v(C, x)$ satisfying (10). Next let $\phi(x)$ be a solution of (E.0) such that $\phi(x)$ $\rightarrow C$ as $x \rightarrow+0$. Then $\phi(x)$ satisfies

$$
\phi(x)=C_{1}+C_{2} \log x+\int_{0}^{x} \frac{1}{\xi} \int_{0}^{\xi} G(t, \phi(t)) \phi(t) d t d \xi
$$

near $x=0$, where C_{1} and C_{2} are some complex constants. Since the integral in the right-hand member tends to 0 as $x \rightarrow+0$, we have $C_{1}=C$ and $C_{2}=0$. Therefore $\phi(x)=v(C, x)$, which implies the second assertion of the theorem. If $c<0$, using ($\mathrm{E} .-$), we can prove the theorem in a similar way. Finally to treat the case where $c>1$ we note the equation

$$
\begin{equation*}
z^{\prime \prime}=\left(\frac{1}{2 z}+\frac{1}{z-1}\right) z^{\prime 2}-\frac{z^{\prime}}{x}-\frac{\gamma z}{x}-\frac{\delta z(z+1)}{z-1} \tag{13}
\end{equation*}
$$

which is obtained from (V) with $\alpha=0$ by putting $y=1 / z$. Then it is easy to see that the solution $y_{o}(c, x)$ of (V) with $c>1$ corresponds to that of (13) with $0<c<1$, from which the theorem follows immediately.

Reference

[1] Shimomura, S.: On solutions of the fifth Painleve equation on the positive real axis. I. Funkcial. Ekvac., 28, 341-370 (1985).

