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Consider an equation of the form

(__
__
1)y Y" + o__ y + LY_ 6y y + 1)(v) y--1 x x

(y- 1) x y--1
(" d/dx) on the positive real axis x 0, where , y and are real con-

stants. This is a special case of the fifth Painlev equation. If 0, equa-

tion (V) admits a one-parameter family of solutions {Y(a, x); a R}
satisfying Y(a, x) ae- xx-r/ - as x + . Furthermore any
real-valued solution (x) satisfying (x) 0 as x is written in
form (x) Y(ao, x), where a0 is some real constant (cf. [1]). In this note
we show the existence of families of solutions with analogous properties near

the regular singular point x 0.
1. We treat the following equations equivalent to (V).
Proposition ([1; Proposition 2.2]). By y tanhZu, equation (V) is changed

into

tanh cosh- + z sinh 2 + zsinh 4

and, by --tan, equation (V) is changed into

(E.--) x (xu’)’ tan u cos-u + x sin 2u + g xZsin 4u.

We obtain a one-parameter family of solutions near x 0.
Theorem 1. Assume that O. Then, for an arbitrary positive constant

Co, equation (V) admits a family of real-valued solutions {Yo(c, x);
Co < c < Co} satisfying

Yo(c, x) cx(1 + O(x +lclx)),
(d/dx) Yo(c, x) cx-’(1 + O(x + cl x))

on the interval 0 < x < ro, where ro ro(Co) is a sufficiently small positive

constant.

Proof Equation (E.0) is written in the form

where Fo(z, ) O(z+ ) for I < 1, 0 < z< 1. By -- z
equation (1) is changed into

( x(xw’) + xw wF (x,
where
(3) F(z, w) O(x+zw)
for wl < z-, 0 < z < 1. Consider a system of integral equations of the
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form

(4)
xw’(x) Jo - () F (, w()) w() d

with an arbitrary real constant , of which the solutions satisfy equation (2).
Let K be an arbitrary positive constant. By the method of successive approx-
imation, we can verify that, if I1 < K, equation (4) possesses a solution
w(, x) satisfying

[w(,x) (1 + O(x+ x2)),
5

x (d/dx) w (, x) 0 (x + s:2x2J2-d) )
for 0 < x < Xo, where Xo xo(K) is a sufficiently small positive constant.
Putting Yo(c, x) -tanh2(x-Jw(, x)) and c- 2, we obtain a family of
solutions {Yo(c, x) 0 < c < Co} of (V). In a similar way, using (E.--), we

obtain the family for Co < c < 0.
Theorem 2. Assume that cr > O. If a(x) is a real-valued solution of

equation (V) satisfying a (x) -* 0 as x + O, then a (x) is expressed as a (x)
Yo(co, x), where Co is some real constant.

Proof. Since a zero of a(x) is double (cf. [1" Lemma 5.1]), the solution
a(x) satisfies either a(x) > 0 or a(x) < 0 for x > 0. We only prove the
assertion in case a(x) > 0, because, if a(x) < O, using (E.--), we can prove
in a similar way. Let u- (x)( 0) be a solution of (E.0) such that
tanh2(x) a(x) and (x) 0 as x--* + 0. It is sufficient to show that
(x) can be expressed as (x)- x -J W(o, x) (cf. (5)) with some real
constant o. Substituting (x) into (1) and putting x--e-t, p(t)-
t-i/2)(e-t), we have

(6) p"(t) + t-lp’(t) ( + F(t))p(t)
where F(t)- (1/4)t-2+ Fo(e-t, (e-t)). Since F(t)-+O as t--*+
(i.e. x--*-4-0), we can take a sufficiently large positive constant To such
that, for t > To,
(7) p(t) < 1,
(8) t-(tp’(t))" p(t) - > ((or ),
where t rain { 1/3, (-/7}. Then we obtain

(9) p(t) O(exp(-- ((c/2 t)t))
as t-- + c, namely

(p (x) O (x’/-g- (log x) 1/2) O (X
as x--* 4- 0. Estimate (9) can be derived in exactly the same way as in the
proof of [1" Lemma 4.3]. In place of (3.1), (4.11) and (4.12) in [1], we use (6),
(7) and (8) respectively. Since (x) x-(x) satisfies equation (2), we
have, for some complex constants C1 and

(x) C- C2x--1 x ) F(, ()) () d.2 f0 (1
Using (3) and the estimate (x)- O(x-Z), we have V(x)- O(x’) as
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x--- + 0, where s’ min {1 2s, v/).-- 6s} > 0. This yields C1x2s --C.x-’/Yg O(1) as x + 0, from which we derive C.- 0. Therefore
g;(x) C1 + V(x), where C1 is a real constant. This implies that ;(x)
satisfies system (4) with C, and that (x) can be expressed as (x)
x’/-g-w(Cx, x) with some real constant Cx. Thus the proof is completed.

2. In case c 0, we have the following.

Theorem 3. Assume that c O. Then, for every c R- {0} u {1},
equation (V) admits a solution yo(c, x) satisfying

o(C, x) c + O(x),
(d/dx)yo(c, x) O (1)

as x--" + O. Furthermore the solution yo(c, x) is a unique solution approaching
c as x--* +0.

Proof. Assume that 0 < c < 1. To prove the existence of the solution

yo(c, x), it is sufficient to show that equation (E.0) admits a solution
y(C, x) satisfying

(10) v(C, x) C+ O(x), v’(C, x) O(1)
as x--’ +0, where C= (1/2) log ((l + v )/(1-- / )) (i.e. c=tanh2C).
Equation (E.0) can be written in the form
(11) (xu’)’ uG(x, u), G(x, u) O(1),
if u C] < 1, 0 < x < 1. Consider a system of integral equations of the
form

fov(x) C + G(t, v(t))v(t)dtd,
(12)

1 Cv’(x) - Jo G(t, v(t))v(t)dt

for 0 < x < 1, of which the solutions satisfy equation (11). By the method of
successive approximation we can prove that equation (12) admits a solution

(C, x) satisfying (10). Next let (x) be a solution of (E.0) such that (x)
C as x-- + 0. Then (x) satisfies

(x) C + C. log x + G(t, (t))(t)dtd
near x-- 0, where C1 and C. are some complex constants. Since the integral

in the right-hand member tends to 0 as x--*-+-0, we have C--C and

C. 0. Therefore (x)--v(C, x), which implies the second assertion of
the theorem. If c 0, using (E.--), we can prove [he theorem in a similar

way. Finally to trea[ the case where c 1 we note the equation

z,, [1 1 z" _rz 6z (z + 1)
(13) -2- +-)z’-z--1 x x z--1
which is obtained from (V) with o 0 by putting y-- 1/z. Then it is easy
to see that the solution yo(c, x) of (V) with c > 1 corresponds to that of

(13) with 0 < c < 1, from which the theorem follows immediately.
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