25. Eisenstein Series on Quaternion Half-space of Degree 2

By Shoyu Nagaoka
Department of Mathematics, Kinki University
(Communicated by Shokichi Iyanaga, m. J. A., May 12, 1992)

1. Eisenstein series. Let \boldsymbol{H} denote the skew field of real Hamiltonian quaternions with the canonical basis $e_{1}=1, e_{2}, e_{3}, e_{4}$. Let $\operatorname{Her}(n, \boldsymbol{H})$ denote the real Jordan algebra consisting of all quaternion Hermitian $n \times n$ matrices and $\operatorname{Pos}(n, \boldsymbol{H}):=\{Y \in \operatorname{Her}(n, \boldsymbol{H}) \mid Y>0\}$ the open subset of all positive definite matrices. Then the quaternion half-space of degree n is given by

$$
\mathscr{H}(n, \boldsymbol{H}):=\{\boldsymbol{Z}=X+i Y \mid X \in \operatorname{Her}(n, \boldsymbol{H}), Y \in \operatorname{Pos}(n, \boldsymbol{H})\} \subset \operatorname{Her}(n, \boldsymbol{H}) \otimes_{R} C .
$$

Set $J_{n}=\left(\begin{array}{rr}0_{n} & E_{n} \\ -E_{n} & 0_{n}\end{array}\right)$. The group

$$
G_{n}:=\left\{\left.M \in M(2 n, \boldsymbol{H})\right|^{t} \bar{M} J_{n} M=q J_{n} \text { for some } q \in \boldsymbol{R}_{+}\right\}
$$

acts on $\mathscr{H}(n, \boldsymbol{H})$ in the usual way. Given $\boldsymbol{Z} \in \mathscr{H}(n, \boldsymbol{H})$ and $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in G_{n}$ with $n \times n$ blocks A, B, C, D set

$$
M\langle Z\rangle:=(A Z+B)(C Z+D)^{-1} .
$$

The Hurwitz order is denoted

$$
\mathcal{O}=\boldsymbol{Z} e_{0}+\boldsymbol{Z} e_{1}+\boldsymbol{Z} e_{2}+\boldsymbol{Z} e_{3}, \quad e_{0}=\frac{1}{2}\left(e_{1}+e_{2}+e_{3}+e_{4}\right)
$$

(cf. [1], [4]).
The group

$$
\Gamma_{n}:=\left\{\left.M \in M(2 n, \mathcal{O})\right|^{\iota} \bar{M} J_{n} M=J_{n}\right\}
$$

is called the modular group of quaternions of degree n. Let $\Gamma_{n, \infty}$ denote the subgroup of Γ_{n} defined by

$$
\Gamma_{n, \infty}:=\left\{\left.\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \Gamma_{n} \right\rvert\, C=0_{n}\right\} .
$$

Given $A \in M(n, \boldsymbol{H}), A^{\vee}$ denotes the element of $M(2 n, C)$ obtained by the representation of quaternions as complex 2×2 matrices and we define $\delta(A)=\operatorname{det}^{1 / 2}\left(A^{\vee}\right)$ (we take as $\delta(A)>0$ for $A \in \operatorname{Pos}(n, \boldsymbol{H})$).

We define a kind of Eisenstein series on $\mathscr{H}(n, \boldsymbol{H})$ by

$$
E_{k}^{(n)}(Z, s)=\delta(Y)^{s / 2} \sum_{\left({ }_{C}^{*} \underset{D}{*}\right) \in \Gamma_{n, \infty \backslash \Gamma_{n}}}|\delta(C Z+D)|^{-s} \delta(C Z+D)^{-k},
$$

where $k \in \boldsymbol{Z},(Z, s) \in \mathscr{H}(n, \boldsymbol{H}) \times \boldsymbol{C}$ and $Z=X+i Y$. It is known that this series is absolutely convergent if $\operatorname{Re}(s)+k>2(2 n-1)$. Put, for $Y \in \operatorname{Pos}(n, H)$, $H \in \operatorname{Her}(n, \boldsymbol{H})$, and $(\alpha, \beta) \in \boldsymbol{C}^{2}$,

$$
\xi^{(n)}(Y, H ; \alpha, \beta)=\int_{H e r(n, \boldsymbol{H})} \boldsymbol{e}(-\tau(H, V)) \delta(V+i Y)^{-\alpha} \delta(V-i Y)^{-\beta} d V,
$$

where τ denotes the reduced trace form, $\boldsymbol{e}(s)=\exp (2 \pi i s)$ for $s \in \boldsymbol{C}$, and $d V$ is the Euclidean measure on $\operatorname{Her}(n, \boldsymbol{H})$ by viewing it as $\boldsymbol{R}^{n} \times \boldsymbol{H}^{(n(n-1)) / 2}$ (cf. [8],
(1.25)). This integral is convergent if $\operatorname{Re}(\alpha+\beta)>2(2 n-1)-1$ and is represented by the generalized hypergeometric function (see Shimura [8]).

Let Λ_{n} be the dual lattice of $\operatorname{Her}(n, \mathcal{O})$ with respect to τ. We define a singular series by

$$
\alpha^{(n)}(s, H)=\sum_{R} \nu(R)^{-s} e(\tau(H, R)), \quad(s, H) \in \boldsymbol{C} \times \Lambda_{n}
$$

where R runs over all representatives of $\operatorname{Her}\left(n, \boldsymbol{H}_{\boldsymbol{Q}}\right) / \operatorname{Her}(n, \mathcal{O})\left(\boldsymbol{H}_{\boldsymbol{Q}}=\mathcal{O} \otimes_{\boldsymbol{Z}} \boldsymbol{Q}\right)$ and $\nu(R)=|\delta(C)|$ with $R=C^{-1} D,\left(\begin{array}{ll}* & * \\ C & D\end{array}\right) \in \Gamma_{n}$ (cf. [9]). It is known that this series is absolutely convergent if $\operatorname{Re}(s)>2(2 n-1)$ and has an infinite product expansion of the form

$$
\begin{gathered}
\alpha^{(n)}(s, H)=\prod_{p: \operatorname{prime}} \alpha_{p}^{(n)}(s, H), \\
\alpha_{p}^{(n)}(s, H)=\sum_{\nu\left(R_{p}\right): \text { power of } p} \nu\left(R_{p}\right)^{-s} \boldsymbol{e}\left(\tau\left(H, R_{p}\right)\right) .
\end{gathered}
$$

According to [9], we call $\alpha_{p}^{(n)}$ the Siegel series for $H \in \Lambda_{n}$.
Proposition 1. $E_{k}^{(n)}(Z, s)$ has a Fourier expansion of the form

$$
\begin{gathered}
E_{k}^{(n)}(Z, s)=\delta(Y)^{s / 2}\left\{1+\sum_{j=1}^{n} \sum_{H \in \Lambda_{j}|Q|} 2^{(j(j-1)) / 2} \xi^{(j)}\left(Y[Q], H ; k+\frac{s}{2}, \frac{s}{2}\right)\right. \\
\left.\times \alpha^{(j)}(k+s, H) \boldsymbol{e}(\tau(H, X[Q]))\right\}
\end{gathered}
$$

where Q is an \mathcal{O}-integral $n \times j$ matrix which can be completed with $n-j$ columms to a unimodular matrix ($Q *$) and runs through a set of representatives of the classes $\{Q\}=\{Q U \mid U \in G L(j, \mathcal{O})\}$ and $Y[Q]={ }^{t} \bar{Q} Y Q \in \operatorname{Her}(j, \boldsymbol{H})$ (cf. Maass [6], §18).
2. Siegel series of degree 2. In order to give an explicit formula fo: $\alpha_{p}^{(2)}(s, H)$, we introduce some notation. For $H \in \Lambda_{2}$, and prime p, we define integers $a, b(a, b \geqq 0)$ by

$$
p^{b}\left\|\varepsilon(H):=\max \left\{q \in N \mid q^{-1} H \in \Lambda_{2}\right\}, \quad p^{a}\right\| 2 \delta(H) \in \boldsymbol{Z} .
$$

Theorem 1. $\alpha_{p}^{(2)}(s, H)$ has the following expression.
(1) If rank $H=2$, then we have

$$
\begin{aligned}
& \alpha_{p}^{(2)}(s, H)=\left(1-p^{-s}\right)\left(1-p^{2-s}\right) F_{p}(s, H), \\
& \quad F_{p}(s, H)=\sum_{l=0}^{b} p^{l(5-s)}\left(\sum_{m=0}^{a-2 l} p^{m(3-s)}\right) \quad \text { if } p \neq 2, \\
& \alpha_{2}^{(2)}(s, H)=\left(1-2^{-s}\right) F_{2}(s, H), \\
& \quad F_{2}(s, H)=\sum_{l=0}^{b} 2^{l(5-s)}\left(\sum_{m=0}^{a-2 l} 2^{m(3-s)}-2^{4-s} \sum_{m=0}^{a-2 l-2} 2^{m(3-s)}\right) .
\end{aligned}
$$

where
where
(2) If rank $H=1$, then we have

$$
\begin{array}{ll}
& \alpha_{p}^{(2)}(s, H)=\left(1-p^{-s}\right)\left(1-p^{2-s}\right)\left(1-p^{3-s}\right)^{-1} \sum_{l=0}^{b} p^{l(5-s)} \quad \text { if } p \neq 2, \\
& \alpha_{2}^{(2)}(s, H)=\left(1-2^{-s}\right)\left(1-2^{4-s}\right)\left(1-2^{3-s}\right)^{-1} \sum_{l=0}^{b} 2^{l(5-s)} . \\
\\
& \alpha_{p}^{(2)}\left(s, 0_{2}\right)=\left(1-p^{-s}\right)\left(1-p^{2-s}\right)\left(1-p^{3-s}\right)^{-1}\left(1-p^{5-s}\right)^{-1} \quad \text { if } p \neq 2, \\
& \alpha_{2}^{(2)}\left(s, 0_{2}\right)=\left(1-2^{-s}\right)\left(1-2^{4-s}\right)\left(1-2^{3-s}\right)^{-1}\left(1-2^{5-s}\right)^{-1} .
\end{array}
$$

These formulae are obtained by a similar argument as in [2] (see, also [4], [7]).

Corollary. (1) If rank $H=2$, then

$$
\alpha^{(2)}(s, H)=\zeta(s)^{-1} \zeta(s-2)^{-1}\left(1-2^{2-s}\right)^{-1} F(s, H),
$$

$$
F(s, H)=\prod_{p} F_{p}(s, H)
$$

Moreover $F(s, H)$ satisfies a functional equation of the form

$$
F(s, H)=|2 \delta(H)|^{3-s} F(6-s, H) .
$$

(2) If rank $H=1$, then

$$
\alpha^{(2)}(s, H)=\zeta(s)^{-1} \zeta(s-2)^{-1} \zeta(s-3)\left(1-2^{4-s}\right)\left(1-2^{2-s}\right)^{-1} \sigma_{5-s}(\varepsilon(H)) .
$$

(3) $\alpha^{(2)}\left(s, 0_{2}\right)=\zeta(s)^{-1} \zeta(s-2)^{-1} \zeta(s-3) \zeta(s-5)\left(1-2^{2-s}\right)^{-1}\left(1-2^{4-s}\right)$.

Remark. (1) In the case $n=1, \alpha^{(1)}(s, h)(h \in \boldsymbol{Z})$ is given by

$$
\alpha^{(1)}(s, h)= \begin{cases}\zeta(s)^{-1} \sigma_{1-s}(h) & \text { if } h \neq 0 \\ \zeta(s)^{-1} \zeta(s-1) & \text { if } h=0 .\end{cases}
$$

(2) Proposition 2 shows that $\alpha^{(2)}$ depends only on $s, \delta(H)$ and $\varepsilon(H)$. Especially, we have

$$
\alpha^{(2)}\left(s,{ }^{t} H\right)=\alpha^{(2)}(s, H)
$$

For the function $\xi^{(n)}(Y, H ; \alpha, \beta)$, we have

$$
\xi^{(n)}\left({ }^{t} Y,{ }^{t} H ; \alpha, \beta\right)=\xi^{(n)}(Y, H ; \alpha, \beta) .
$$

3. Functional equation. By the corollary of Theorem 1, we get the following result.

Theorem 2. Set

$$
\Phi(Z, s)=2^{s / 2} \frac{1-2^{2-s}}{s-4} \xi(s) \xi(s-2) E_{0}^{(2)}(Z, s),
$$

where $\xi(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)$. Then $\Phi(Z, s)$ can be continued as a meromorphic function in s and satisfies the following functional equation

$$
\Phi\left({ }^{t} Z, 6-s\right)=\Phi(Z, s)
$$

4. Explicit formula of Fourier coefficient. As an application of Theorem 1, we get an explicit formula of the Fourier coefficient of holomorphic Eisenstein series $E_{k}^{(2)}(Z, 0)$. From the analytic properties of hypergeometric functions, Siegel series and Epstein zeta functions, we know that $\lim _{s \rightarrow 0} E_{k}^{(2)}(Z, s)$ is holomorphic in Z if $k \geqq 4$ and it is a modular form of weigh k for Γ_{2}. Let

$$
\lim _{s \rightarrow 0} E_{k}^{(2)}(Z, s)=\sum_{0 \leqq H \in A_{2}} a_{k}(H) \boldsymbol{e}(\tau(H, Z))
$$

be the Fourier expansion.
Theorem 3. We assume that k is an even integer such that $k \geqq 4$. Then $a_{k}(H)$ is given by the following formula:

$$
a_{k}(H)= \begin{cases}1 & \text { if } H=0_{2} \\ -\frac{2 k}{B_{k}} \sigma_{k-1}(\varepsilon(H)) & \text { if } \operatorname{rank} H=1 \\ -\frac{4 k(k-2)}{\left(2^{k-2}-1\right) B_{k} \cdot B_{k-2}} \sum_{d \mid \varepsilon(H)} d^{k-1}\left\{\sigma_{k-3}\left(2 \delta(H) / d^{2}\right)-2^{k-2} \sigma_{k-3}\left(\delta(H) / 2 d^{2}\right)\right\} \\ \text { if } \operatorname{rank} H=2,\end{cases}
$$

where B_{k} is the k-th Bernoulli number and we understand that $\sigma_{k}(m)=0$ if $m \notin N$.

Remark. In [5], Krieg proved this formula by a different method ([5], Theorem 3).

We consider the following theta series

$$
\Theta\left(Z, S_{H}\right)=\sum_{X \in \mathcal{C}} \boldsymbol{e}\left(\frac{1}{2} \tau\left(S_{H}[X], Z\right)\right), \quad Z \in \mathscr{I}(2, H),
$$

where $\mathcal{L}=M(2, \mathcal{O})$ and

$$
S_{H}=\left(\begin{array}{cc}
2 & e_{1}+e_{2} \\
e_{1}-e_{2} & 2
\end{array}\right) \quad \text { (cf. [3], p. 114). }
$$

This series is a generator of the space of modular forms of weight 4 and has a Fourier expansion of the form

$$
\begin{aligned}
& \Theta\left(Z, S_{H}\right)=\sum_{0 \leqq H \in \notin 2} A\left(S_{H}, 2 H\right) \boldsymbol{e}(\tau(H, Z)) \\
& A\left(S_{H}, 2 H\right)=\#\left\{X \in M(2, \mathcal{O}) \mid S_{H}[X]=2 H\right\} .
\end{aligned}
$$

This shows that $A\left(S_{H}, 2 H\right)=a_{4}(H)$.
Acknowledgements. After this work was completed, Prof. A. Krieg and Prof. W. L. Baily, Jr. informed the author that Dr. Kim proved our Theorem 2 in his thesis independently. The author would like to express his gratitude to Prof. Krieg and Prof. Baily for their helpful comments.

References

[1] A. Hurwitz: Vorlesungen über die Zahlentheorie der Quaternionen. SpringerVerlag (1919).
[2] G. Kaufhold: Dirichletsche Reihe mit Funktionalgleichung in der Theorie der Modulfunktionen 2. Grades. Math. Ann., 137, 454-476 (1959).
[3] A. Krieg: Modular forms on half-spaces of quaternions. Lect. Notes in Math., vol. 1143, Springer-Verlag (1980).
[4] --: The elementary divisor theory over the Hurwitz order of integral quaternions. Linear and Multilinear Algebra, 21, 325-344 (1987).
[5] --: The Maaß space and Hecke operators. Math. Z., 204, 527-550 (1990).
[6] H. Maass: Siegel's modular forms and Dirichlet series. Lect. Notes in Math., vol. 216, Springer-Verlag (1971).
[7] S. Nagaoka: An explicit formula for Siegel series. Abh. Math. Sem. Univ. Hamburg, 59, 235-267 (1989).
[8] G. Shimura: Confluent hypergeometric functions on tube domains. Math. Ann., 260, 269-302 (1982).
[9] --: On Eisenstein series. Duke Math. J., 50, 412-476 (1983).

