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1. Introduction. Integrability conditions for differential forms go
back to Poincar [10, Section II]. Let D be a bounded domain in R.
What is called the Poincar6 lemma (cf. [11, Theorem 4.11]) asserts that
every smooth closed differential form on D is exact provided that D is
starshaped. This is proved by constructing a (linear) integral operator
I such that
( 1 d(Ico)-+-I(dco)--o,
where w is a orm on D and d denotes the exterior derivative. Indeed,
do-O implies that w has a potential I. However, for usual choice of I,
ound or example in [11, Theorem 4-11], the support of Iw, sptlw, may
not be compact in D even if w is compactly supported in D.

Our goal in this paper is to construct an integral operator K satisfy-
ing (1) with I-K such that sptK is compact if spt w is compact. (More
precisely we will show that spt KocD U/ if spt cD/ where/ is an
open subset on D.) We also prove that K is bounded in Lp Sobolev spaces.

Bogovski [1], [2] first constructed such K on n-forms satisfying

=0 (even for an arbitrary bounded Lipschitz domain D); in this dcase
D

equals the divergence operator. As noticed in [1, Theorem 4] such a prop-
erty on K is important for localizing a closed form by preserving closed-
ness. His operator K is applied to various analyses on incompressible
viscous fluid (cf. [3], [4], [6], [7], [9], [12], [13]).

Borchers and Sohr [5] and Griesinger [8] treated such a problem on
the operator rot. In fact Griesinger [8] constructed an integral operator
on a bounded domain D starshaped with respect to a ball in D although
she didn’t prove (1).

In this paper we extend Bogovski’s formula for the exterior derivatives
on a bounded domain starshaped with respect to a ball.

2. Formula of potentials. We first give an explicit formula of K.
Let DcR be a bounded domain starshaped with respect to a closed ball B
in D, i.e., D--{tx-F(1--t)ylx e D, y e B, t e [0, 1]}. Let B’ be a closed ball
in the interior of B. For ]--1, ..., n and given h e C(B) satisfying spt h

cB’and [ h dx--l, we set
dB’

Let _q) denote the space of C k-forms compactly supported in D. For
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w e we recall the exterior derivative dw e +’ of w

do < f ... dx Adx’
where

dx A. Adx.= f,...,
i...(i

We defineK e- by

dx A Adx A Adx
(the symbol over dx indicates that it is omitted). Since the integral
kernel of K is integrable, K can be extended to a bounded linear operator
on L, where L denotes the space of p-th integrable k-forms on D. We
denote the convex hull spanned by sets A and B by [A B] {tx+(1--t)yx
e A, y e B, t e [0, 1]} and the diameter of A by diam A.

Remark. Bogovski [1] constructed H(x, y) as a potential of the op-
erator div and Griesinger [8] constructed H(x, y) as a potential of the oper-
ator rot.

Theorem. ( ) Assume that lp.
(a) For any e, sptKc[spt B’].
(b ) Suppose that F is an open subset on 3D. Then for any we L,

(ii)

(iii)

spt o D U F implies spt Kw D U F.
(a) For k= l, ., n-- 1, it holds that

(b)

Let m=0, 1, 2, and p e (1, c).

d(Ko)+K/(do)-(o for all (o e .
For k--n, it holds that

d(Ko) o for all o e with oo O.
JD

Then it holds that

for all o e
with C=C(n, k, m, p, diam D, B’). Here I1" I, denotes the L-norm on D
and Ff denotes the tensor consisting of all m-th derivatives of coefficients
o f.

Remark. The estimate (iii) shows that (ii) holds for all e L.
:. Proofs. Since (ii)(b)and (iii) can be proved in a similar way to

[5, Theorem 2.4], we here only prove (i) and (ii)(a).
(i) (a) By the definition of Ko, x e spt K(o implies y+ t(x-- y) e B’ for

some t_l and y e sptw. On the other hand for any x e D, y e sptw and
t

_
1, y+ t(x- y) e B’ implies x e [spt w B’] since x t-’(y+ t(x-- y)) + (1--

t-gy.
(i) (b) For0 let U be an open set given by U= {x e D dist (x, spt)

}. There exist w e_q) such that sptwU and w--w in L. Since
[spt B’]c[U B’], (i)(a) yields sptKwc[U B’]. We can see [U; B’]
3D=U3D (see [12, Lemma 3.2]). Since 0 is arbitrary and F is
open, we obtain (i) (b).
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(ii)(a) For simplicity we write [dx}’=dx,A... AdxA.../dx
and d=,<...< df,..., where

dfi,...---
, f,... dx /dxi /k ../

jil,...,ik OX
and Kw=:,<...<**Kf,,..., in the same way. For e0 we set a truncated
integration by

K;f,...(x) (-- 1)- (--)H(, )f...()d{d}
a=l D

where D={yeD;[x--y[s}. Our goal is to prove that the operator
CC defined by

f ...= d(Kif,...)+Ki+(df,...)
converges to the identity operator in the strong topology, namely that
ww in C for all e, where C is the space of continuous k-forms on
D. In what follows we consider each component f... so we suppress its
subscript. Since (i)(a) implies Kw(x)=0 on D, applying the chain rule
yields

d(Kk() = (-- 1)"- (% - Ox
{(x-- y),H(x, y)}f(y)dy

+ (-v)g(z, v)f() (.- v) d dz A{d}

=V+S.
Here {i} "=i,..., i_, i.,..., i and denotes he areal element of the
shere z-l=s. On the other hand, we obtain via integrating by arts,

a=l jil,’"ik

8 {(x--y).H +,(x, y)}f(y)dydx A {dx"}](- 1)"- z), 8y

It remains to prove that V, + V2 0 and S, +S.--f in C as $ O.
The Leibnitz rule yields

v, k JH(x, y)f(y)dydx’/ /dx

+ (-- 1)"-1 j (x-- y).....H(x y)f(y)dydx/ (dx.}
.= x
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V=y {(n--k)H/(x, y)f(y)

(x--Y)( H/(x y))f(y)}dydx/.../dx
t,...,i y_

(.. 0 H ,(x,y) f(y)dydxA{dx"}+E E (--1)" (x--y)
aYa=l ji’,.ik

Here and hereafter the domain D of volume integrations is suppressed.
Noting that

.H+,(x, y)= .H(x, y),ay ax
we calculate V+V by using trivial identities

( 2 ) . ,,’",

(- 1)--dx-A {dx.}=dx,A Adx
and obtain

V+ V=.[ {kH(x, y)+(n- k)H+(x- y)}f(y)dydx’A Adx

+E (--1)"-’ (x--YY H(x y) f(y)dydx"A{dx}

I (x--YY( H(x,Y))f(y)dydx/ /dx.,..., x= {kH(x, y)+(n--lc)H+,(x, y)

"-I-.’, (x--yY 8Ox ,,. H(x, y) f(y)dydx’A Adx

{h(y+ t(x--y))t(t 1)-}dt]f(y)dydx,/.../dx
---0.

We next show that lim, 0 (S, +S)=f in ’. Applying transformations
t=r/[x--y] and r=s+lx-y to H(x, y) yields

1 I: ( x--Y)(s+lx-yl)-’s-ds"H(x, y)- ix_yl h x+s.lX_y
Since dist(x,x+s(x-y)/Ix-yl)=s,x+s(x-y)/ix-yl e spth for any x, y e D
if s_l’=diamD. Through the binomial expansion H(x,y) is now re-
written as follows;

H(x, y)-__’o (k l)G,(x, y),

where
1 Ioh(X+sX--Y)s,__.ds.G(x,y)"

}x-Yl- }x-y}
This expression implies

I (x-yYffx-yyS,=I (--1)"-’ 2

1)=o
G(x, y)f(y)davdx A {dx}
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’ ,..., Ix-l=, x- Y
f(Y)

=o
G(x, y)dadx’/ /kdx

(x-- yY(x---E E (--1)- ()

o .(x, y)vdx (dx"}.
We simply denote

S+S=I,_,= (e= A,(x, Y))f(Y).
For =0, applying (2) to S, and the second term in & yields

Ao x y lGo(x, y)dx’A Adx.
The other terms can be ignored. Indeed, letting eo0 yields

su A(, )Z(v) 0
xD Ix-Yl

through estimates

Le T CCbe he oeraors defined by

f() =[ A(z, )f()de
Ix-yl

:/izt=l (It h(x +sz)sn-lds)f(x-ez)dxt’ dxi

(via transformation x--y=z). The operators T on C are bounded and
{Tf} is a Cauchy sequence in F in e as e tends to zero for all f e . There
thus exists the limit operator T, which is given by Tf=lim0 Tf. We
obtain

Tf(x)= {I,=, (0 h(x---8z)8n-’d8)dqz}f(x)

(y,)h(y)dy)f(x)=f(x).

4. Remark. Our potential Kw is considered as a variant of usual
potential in the Poincar lemma. Indeed, let h=hz e Cg(BD be supported
in Bz such that h. converges to the &function as R0, where B is the
ball centered at 0 with radius R. Then Kw converges to

)Jw(x)=(--1) +’ E E (--1)"-’ s-’f,...(sx) x"
il.*.i

dx’A Adx"A Adx%
Note that this is a variant of the usual potential (cf. [11, Theorem 4-11])

Io(x)= y k (--l’-*(I: s-*f,...(sx’ds)x"i<...<i

dx’A Adx"A Adx.
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