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1. Introduction. The purpose of this paper is to give a sufficient
condition for the domain of the square root of a regularly accretive operator
and that of its adjoint operator to be the same.

Let X and V be two Hilbert spaces with VX. Let the inclusion
from V into X be continuous, and let V be dense in X. We denote by (f, g)
(resp. (u, v)) the inner product in X (resp. V) and put IIfIl-(f, f)n and
u II (u, u).

Let a[u, v] be a bounded sesquilinear form on V V;
(1.1) la[u, v][Ml[ullvIIvllv, M>O, for any u, v e V.
We suppose that a[u, v] is strongly coercive;
(1.2) Re a[u, u] 3 u I1, > O, for any u e V.
Let A be the closed operator associated with the variational triple {V, X,
that is, u e V belongs to D(A) (the domain of A) if and only if there exists

f e X such that a[u, v]--(f, v) for any v e V, and we define Au-f. We
call A a regularly accretive operator.

We define the adjoint form a*[u, v] by a*[u, v]=a[v, u] for any u, v e V.
It is known that the closed operator associated with the variational triple
{V, X, a*} is the adjoint operator A* of A.

As is well known, we can construct the fractional power A (00_<_1)
of the regularly accretive operator A. Kato [3] showed that D(AO)
D(A*o)cV if 0=<01/2. But generally D(A/)--D(A*/) does not hold, for
Mcintosh [7] gave a counterexample. On the other hand, Kato and Lions
obtained the following results independently.

Theorem A (Kato [4], Lions [6]). Each of the following condition is
sufficient for D(A/) D(A*/)= V.

( ) Both D(A/) and D(A*) are oversets (or subsets) of V.
(ii) D(A)- D(A*) for t=1/2 or 1.
(iii) There exists a Hilbert space W which satisfies (1) WcX, (2) V is

a closed subspace o.f IX, W]n, (3) D(A)W and D(A*)W, where [X, W]
(0<_tl) denotes the complex interpolatio.n space of X and W.

Remark 1. Theorem A-(iii) is due only to Lions.
Remark 2. We may replace Theorem A-(ii) with D(A)=D(A*) for

some t with 1/2__<1, because we have [X, D(A)]()=D(A/).
In the next section we give another sufficient condition for D(A’/)=

D(A*m) V.
2. Main result. The sesquilinear form a[u, v] can be written
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11 (a+a*) as-- (a-a*),a=a+ia, a - --where a. and a are symmetric orms.
Let A be the associated operator with (V,X, a,}. Then it is known

that A is a positive self-adjoint operator satisfying D(A/) V (with the
equivalent norm) and a[u, u]--llAVull for u e V. We note that

las[u, v] I< M

holds rom (1.1) and (1.2). In order to obtain a sufficient condition for
D(A/)--D(A*/) V we need a stronger estimate or a as follows.

Theorem 1. Let 00<_1. Suppose that
(2.1) [as[u, v]i<-MllAl’ull IIA/vll, MI>O, for any u, v e V.
Then we have for any a with Oal--O/2,
(2.2) D(A)cD(A),
(2.3) IIAu--AuI[<=C A-(’-)12u CO, for any u e D(A).
If we replace A with A*, (2.2) and (2.3) remain valid.

Proof. Our proof is a slight modification of Kato [3] who proved
Theorem 1 when 0 1.

There exists a bounded symmetric operator in X such that
(Bu, v)=as[A-mu, A-my], u, v e X.(2.4)

Then we have
(2.5)

(2.6)

A A’I(1 +iB)A’1,

(A+) -’ (A+ )-’ + A1/2
2>0,BD

A+2
where D is a bounded operator in X with IIDII<=I+IIB
(2.4)-(2.6) is found in Kato [3].

Let 0<a<l--0/2. Now we shall show that for u e D(A:),

The proof of

(2.7)

exists and that
(2.8) Ilwll<CIIA:-(’-)/ull, C>0.
Here and in the sequel we denote by C positive constants independent of
u, v, , t, a and b which may differ from each other. From (2.1), (2.4) and
(2.6) we have for any v e X,

(2.9) I({(A+2)-’--(A+2)-’}u, v)lg as

Let O<a<b< c. It follows from (2.9) and Schwarz’ inequality that

2:({(A + 2)-’-- (A+ 2)-’)u, v)d2

AI A,I
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Let (E} be the spectral resolution of A.

Hence we obtain

Then we have

vii d2_<_f: 2-d2 (t+te2)
(1+2)

d2 dllEtvll<Cllvl{’.

2"{(A+2)---(A+2)-}u d2 <C 2"+e-d2 (t+2)-------V

fb/t 2a+0-1where F(t a, b) d2.

Noting that lim= F(t a, b)=0 and F(t; a, b)_<_F(1; 0, c)< c for --1<2a
+0--141 and that D(AOcD(A"-(’-")/), we conclude from the bounded con-
vergence theorem that (2.7) exists and that (2.8) holds.

On the other hand, it follows from the definition of fractional powers
or the spectral resolution of A that

(2.10) A"u= sina lim 2{2--(A+2)-}u d2.
ff R

It follows from (2.7) and (2.10) that

R

exists. Therefore we have u e D(AO and w’=A"u (see Kato [1]). Hence
we have proved D(AOD(AO. (2.3) follows from (2.7), (2.8), (2.10) and
(2.1D.

Similarly we get the statement for A*. Q.E.D.
Combining Theorem A-(i) and Theorem 1, we get the following
Theorem 2. Let (2.1) hold for some 0 with 0g0<l. Then we have

D(A/) D(A*m) V.
Remark . Shimakura [9] treated another type of perturbation. He

considered a not necessarily regularly accretive operator A=A+K in the
Hilbert space X where A is a strictly positive self-adjoint operator with
the domain D(A) dense in X, and K is a linear operator whose domain
D(K) contains D(A). He obtained D(A)=D(A) for any 0 with 0g0g1,
assuming that the resolvent (A+2)- and (A+2)- satisfy some conditions.
We note that D(A)=D(A) in his ease. On the other hand, in Theorem 2 we
have D(A)@D(A) generally, although we restrict ourselves to the ease of
regularly accretive operators. Henee our result is different from Shima-
kura’s result.

It is interesting to investigate whether Theorem 1 can be improved or
not, that is, whether D(AO=D(A*O=D(AO is valid or not for any a with
0<q<1--0/2 under condition (2.1). The following gives an affirmative
example to this problem. Let I=(0,1)R. Let X=L(I) and V=H(I)
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where H(I) is the Sobolev space. For a e C\R let us put

a[u, v]=, (u"(x)v"(xl+ ou’(x)-v’(x))dx.

The domains of fractional powers of A, A* and A are given in terms of
the boundary conditions such as
(2.12) u"(0) u"(1)= 0,

dx,(2.13)
d(x)

(2.14) u()(0) au’(0) u()(1) au’(1) 0,

(2 15) o ’u()(x)--u’(x)’ dxc,
d(x)

where d(x) min {Ixl, Ix- 11}. We put
E={u e H4(I) u satisfies (2.12) and (2.14)},

and obtain
(2.16) D(A)=E, Au=u(4)-ou

For A* (resp. A) we have (2.16) with a replaced by (resp. Re a). Clearly

we have D(A)=/==D(A*)=/==D()=/==D(A). From the interpolation theorem and
Grisvard [2, Theorem 8.1] it follows that

D(A) [L2(I), D(A)]

l{u e HSn(I) u satisfies (2.13)} (a=-)
=[u e H4(I) u satisfies (2.12)}
{u e Hm(I); u satisfies (2.12) and (2.15)} (a---)
{u e H*(I) u satisfies (2.12) and (2.14)} (al).

The domains of fractional powers of A* and A are given in the similar

way. Therefore it follows that

D(A9 D(A*9 D(Ag, or 0a-,
and

D(A9 :/:: D(A*9 :/:: D(A9 :/:: D(A), for 7a1.
8--

On the other hand, we have for some M0,
la[u, v] I--<_llm [llu’ I1()IIv’ll()<=MllA/ullllA/vll

where the last inequality is due to Lemma 3 in the next section. Thus this

example suggests the possibility of an improvement of Theorem 1.

). Application. We can apply Theorem 2 to the non-self-adjoint

elliptic operator with non-smooth coefficients and a non-smooth boundary.

Let m and n be positive integers. Let 9 be a bounded domain in R with

the restricted cone property. Let X--L(t9). Let V be the closed subspace

of the Sobolev space H(9) including H(t9) (the closure of C(2) in H(tg)).

We denote by ]1 the norm of H(2). Let a[u, v] be an integro-differential

sesquilinear form of order m with bounded coefficients;

a[u, v]--f , a.(x)D"u(x)Dv(x)dx, u, v e V,
J
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a=(a, ..., a), D"=(-- /- 1)"(3/3x)",...(3/3x),
which satisfies (1.2). Let A and A be the operators as defined in the pre-
vious sections.

Lemma . In the abo,ve situation we have
]D"ui]CiA"’/uti, O]algm, u e V.

Proof. It follows from the complex interpolation theory that
H(9) [L(9), H(9)]/ [L(9), V]/

[L(9), D(Am)]/=D(A/), Okm,
which gives the lemma. Q.E.D.

Theorem 4. Suppose that
(3.1) a,=a, (]+fl=2m, 2m-- 1).
Then we have D(Am)=D(A*’/)= V.

Proof. It follows from the assumption that
[a[u, v]gM[[u][_,]]v]]_, MO, for any u, v e V.

Combining the above inequality and Lemma 3, we get (2.1) for =1-1/m.
Therefore we can apply Theorem 2 to obtain the theorem. Q.E.D.

We stress that the smoothness of the coefficients a. and the boundary
39 are not assumed in Theorem 4. When the coefficients and the boundary
are sufficiently smooth and when V satisfies some condition such as V=
H(9) or V=H(9) etc., Lions [6] also obtained Theorem 4 without assum-
ing (3.1) by using the relations D(A)H(9), D(A*)cH(9) and [L(9),
H(9)]n=H(9), and applying Theorem A-(iii) with W=H(9). We
note that D(A)H(9) and D(A*)cH(9) do not always hold when the
coefficients and the boundary are not smooth. It seems reasonable to con-
jecture that Theorem 4 is valid without assuming (3.1). However this
question remains open.

Our result remains valid if a[u, v] has some boundary integrals con-
raining derivatives of order gin-1 when 39 is sufficiently smooth.
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