80. On the Starlikeness of the Bernardi Integral Operator

By Rosihan M. Ali*) and D. K. Thomas**)
(Communicated by Shokichi Iyanaga, m. J. A., Nov. 12, 1991)

Abstract

Denote by A the class of functions f analytic in the unit disc D and normalised so that $f(0)=f^{\prime}(0)-1=0$. For $f \in A$ and $-1<c \leq 0$, let F_{c} be defined by $F_{c}(z)=\frac{(1+c)}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t$ for $z \in D$. We find estimates on β so that $\operatorname{Re} f^{\prime}(z)>\beta$ will ensure the starlikeness of F_{c}.

Introduction. Denote by A the class of functions f which are analytic in the unit disc $D=\{z:|z|<1\}$ and normalised so that $f(0)=f^{\prime}(0)-1=0$. Let R be the subclass of A satisfying $\operatorname{Re} f^{\prime}(z)>0$ for $z \in D$ and S^{*} be the subset of starlike functions, i.e.

$$
S^{*}=\left\{f \in A: \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0 \text { for } z \in D\right\}
$$

If S denotes the subset of A consisting of univalent functions, then it is well known that $R \subset S$ and $S^{*} \subset S$. Krzyz [3] gave an example to show that R is not a subset of S^{*}. On the other hand, Singh and Singh [6] showed that $f \in R$ would imply $F_{0} \in S^{*}$, where

$$
F_{0}(z)=\int_{0}^{z} \frac{f(t)}{t} d t
$$

In a later paper, Singh and Singh [7] showed that $\operatorname{Re} f^{\prime}(z)>-\frac{1}{4}$ is sufficient to ensure $F_{0} \in S^{*}$ and more recently [5] it was shown that $\operatorname{Re} f^{\prime}(z)$ >-0.262 implies the same.

Suppose that $f \in A$ and $c>-1$. For $z \in D$, the Bernardi operator [1] is defined by

$$
\begin{equation*}
F_{c}(z)=\frac{1+c}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \tag{1}
\end{equation*}
$$

It was shown in [5] that $\operatorname{Re} f^{\prime}(z)>\beta$ implies $F_{c} \in S^{*}$ provided

$$
\begin{equation*}
(1+c) \beta>\frac{\log (4 / e)}{6}\left(c^{2} \tan ^{2} \frac{\alpha^{*} \pi}{2}-3\right) \tag{2}
\end{equation*}
$$

where $1=\alpha^{*}+(2 / \pi) \tan ^{-1} \alpha^{*}$. We note that when $c=0, \beta=-0.193$ which is not as good an estimate as the constant -0.262 . If $c=1$, then $\beta=-0.017$, which was also obtained in [4].

In this paper we shall improve the constant β in (2) for $-1<c \leq 0$.
Results. Theorem. Suppose $f \in A$ and F_{c} be given by (1) and that

[^0]$$
S(1+c)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+1+c} .
$$

For $-1<c \leq 0$ and $z \in D$, let $\operatorname{Re} f^{\prime}(z)>\beta$. Then $F_{c} \in S^{*}$ provided

$$
\begin{equation*}
\beta=\frac{3+2(1+c)[k S(1+c)-1]}{2(1+c)[k S(1+c)-1]}, \tag{3}
\end{equation*}
$$

where

$$
k=1-2 c-\log \frac{4}{e}
$$

and

$$
1-3(1+c)^{-1}\left[2+\left(1-\log \frac{4}{e}\right)^{2}\right]^{-1} \leq \beta \leq 0 .
$$

We shall need the following lemma.
Lemma [5]. Let p be analytic in D with $p(0)=1$. Suppose that $\alpha>0$, $\beta<1$ and that for $z \in D, \operatorname{Re}\left(p(z)+\alpha z p^{\prime}(z)\right)>\beta$.

Then for $z \in D$,

$$
\operatorname{Re} p(z)>1+2(1-\beta) \sum_{n=1}^{\infty} \frac{(-1)^{n}}{1+\alpha n} .
$$

Proof of Theorem. From (1) we have

$$
\begin{equation*}
F_{c}^{\prime}(z)+\frac{1}{1+c} z F_{c}^{\prime \prime}(z)=f^{\prime}(z), \tag{4}
\end{equation*}
$$

and so using the lemma with $\alpha=1 /(1+c)>0$, we obtain
(5)

$$
\operatorname{Re} F_{c}^{\prime}(z)>1+2(1-\beta)(1+c) S(1+c)=\mu \text { say } .
$$

Applying the lemma again with $\alpha=1$ and $\beta=\mu$ gives

$$
\begin{equation*}
\operatorname{Re} \frac{F_{c}(z)}{z}>(1-\mu) \log \frac{4}{e}+\mu \tag{6}
\end{equation*}
$$

Note also that from (4),

$$
F_{c}^{\prime \prime}(z)+z F_{c}^{\prime \prime \prime}(z)=(1+c) f^{\prime}(z)-c F_{c}^{\prime}(z),
$$

and so since $c \leq 0$, the hypotheses of the theorem and (5) give

$$
\begin{equation*}
\operatorname{Re}\left\{z F_{c}^{\prime \prime \prime}(z)+F_{c}^{\prime}(z)\right\}>(1+c) \beta-c \mu . \tag{7}
\end{equation*}
$$

We now use the Clunie-Jack lemma [2]. Let

$$
\frac{z F_{c}^{\prime}(z)}{F_{\mathrm{c}}(z)}=\frac{1+w(z)}{1-w(z)},
$$

so that w is analytic in $D, w(0)=0$ and $w(z) \neq 1$. Then

$$
\begin{equation*}
z F_{c}^{\prime \prime}(z)+F_{c}^{\prime}(z)=\frac{F_{c}(z)}{z}\left[\left(\frac{1+w(z)}{1-w(z)}\right)^{2}+\frac{2 z w^{\prime}(z)}{(1-w(z))^{2}}\right] . \tag{8}
\end{equation*}
$$

Thus we need to show that $|w(z)|<1$ for $z \in D$. Suppose that there exists $z_{0} \in D$ such that for $|z| \leq\left|z_{0}\right|, \max |w(z)|=\left|w\left(z_{0}\right)\right|=1$. Then the Clunie-Jack lemma implies that $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)=k e^{i \theta}$ for $0<\theta<2 \pi$ and where $k \geq 1$. With $z=z_{0}$, it follows from (8) that

$$
\begin{aligned}
\operatorname{Re}\left\{z_{0} F_{c}^{\prime \prime}\left(z_{0}\right)+F_{c}^{\prime}\left(z_{0}\right)\right\} & =\operatorname{Re}\left\{\frac{F_{c}\left(z_{0}\right)}{z_{0}}\left[\left(\frac{1+e^{i \theta}}{1-e^{i \theta}}\right)^{2}+\frac{2 k e^{i \theta}}{\left(1-e^{i \theta}\right)^{2}}\right]\right\} \\
& \leq-\frac{k}{2 \sin ^{2}(\theta / 2)} \operatorname{Re} \frac{F_{c}\left(z_{0}\right)}{z_{0}} .
\end{aligned}
$$

Since $(1-\mu) \log (4 / e)+\mu>0$ and $k \geq 1$,

$$
\operatorname{Re}\left\{z_{0} F_{c}^{\prime \prime}\left(z_{0}\right)+F_{c}^{\prime}\left(z_{0}\right)\right\} \leq-\frac{1}{2}\left[(1-\mu) \log \frac{4}{e}+\mu\right]=(1+c) \beta-c \mu
$$

where we have used (6). Thus at $z=z_{0}$ we have a contradiction to (7) and so the result is proved.

Remarks. 1. When $c=0$, (3) reduces to $3 \beta+(1-\beta)(2-\log (4 / e))$ $\log (4 / e)=0$, which is the result in [5].
2. For $-1<c \leq 0$, the value of β in (3) is smaller than the value β in (2).

References

[1] S. D. Bernardi: Convex and starlike univalent functions. Trans. Amer. Math. Soc., 135, 429-446 (1969).
[2] I. S. Jack: Functions starlike and convex of order α. J. London Math. Soc., 3, 469-474 (1971).
[3] J. Krzyz: A counter example concerning univalent functions. Folia Soc. Scient. Lubliniensis, Mat. Fiz. Chem., 2, 57-58 (1968).
[4] M. Nunokawa: On starlikeness of Libera transform. Complex Variables, 17, 79-83 (1991).
[5] M. Nunokawa and D. K. Thomas: On the Bernardi integral operator (to appear).
[6] R. Singh and S. Singh: Starlikeness and convexity of certain integrals. Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 35, 45-47 (1981).
[7] R. Singh and V. Singh: Convolution properties of a class of starlike functions. Proc. Amer. Math. Soc., 106, 145-152 (1989).

[^0]: *) School of Mathematical and Computer Sciences, Universiti Sains Malaysia, Malaysia.
 **) Department of Mathematics and Computer Science, University of Wales, United Kingdom.

