80. On the Starlikeness of the Bernardi Integral Operator

By Rosihan M. ALI*) and D. K. THOMAS**)

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1991)

Abstract: Denote by A the class of functions f analytic in the unit disc D and normalised so that f(0)=f'(0)-1=0. For $f \in A$ and $-1 < c \le 0$, let F_c be defined by $F_c(z) = \frac{(1+c)}{z^c} \int_0^z t^{c-1}f(t)dt$ for $z \in D$. We find estimates on β so that Re $f'(z) > \beta$ will ensure the starlikeness of F_c .

Introduction. Denote by A the class of functions f which are analytic in the unit disc $D = \{z : |z| < 1\}$ and normalised so that f(0) = f'(0) - 1 = 0. Let R be the subclass of A satisfying Re f'(z) > 0 for $z \in D$ and S^* be the subset of starlike functions, i.e.

$$S^* = \Big\{ f \in A : \operatorname{Re} \frac{zf'(z)}{f(z)} > 0 \text{ for } z \in D \Big\}.$$

If S denotes the subset of A consisting of univalent functions, then it is well known that $R \subset S$ and $S^* \subset S$. Krzyz [3] gave an example to show that R is not a subset of S^* . On the other hand, Singh and Singh [6] showed that $f \in R$ would imply $F_0 \in S^*$, where

$$F_0(z) = \int_0^z \frac{f(t)}{t} dt.$$

In a later paper, Singh and Singh [7] showed that $\operatorname{Re} f'(z) > -\frac{1}{4}$ is sufficient to ensure $F_0 \in S^*$ and more recently [5] it was shown that $\operatorname{Re} f'(z) > -0.262$ implies the same.

Suppose that $f \in A$ and c > -1. For $z \in D$, the Bernardi operator [1] is defined by

(1)
$$F_{c}(z) = \frac{1+c}{z^{c}} \int_{0}^{z} t^{c-1} f(t) dt.$$

It was shown in [5] that Re $f'(z) > \beta$ implies $F_c \in S^*$ provided

(2)
$$(1+c)\beta > \frac{\log(4/e)}{6} \left(c^2 \tan^2 \frac{\alpha^* \pi}{2} - 3\right)$$

where $1 = \alpha^* + (2/\pi) \tan^{-1} \alpha^*$. We note that when c = 0, $\beta = -0.193$ which is not as good an estimate as the constant -0.262. If c = 1, then $\beta = -0.017$, which was also obtained in [4].

In this paper we shall improve the constant β in (2) for $-1 < c \le 0$.

Results. Theorem. Suppose $f \in A$ and F_c be given by (1) and that

^{*)} School of Mathematical and Computer Sciences, Universiti Sains Malaysia, Malaysia.

^{**&#}x27; Department of Mathematics and Computer Science, University of Wales, United Kingdom.

R. M. ALI and D. K. THOMAS

$$S(1+c) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n+1+c}$$

For
$$-1 < c \le 0$$
 and $z \in D$, let Re $f'(z) > \beta$. Then $F_c \in S^*$ provided
(3) $\beta = \frac{3+2(1+c)[kS(1+c)-1]}{2(1+c)[kS(1+c)-1]}$,

where

$$k=1-2c-\log\frac{4}{e}$$

and

$$1 - 3(1+c)^{-1} \left[2 + \left(1 - \log \frac{4}{e}\right)^2 \right]^{-1} \le \beta \le 0.$$

We shall need the following lemma.

Lemma [5]. Let p be analytic in D with p(0)=1. Suppose that $\alpha > 0$, $\beta < 1$ and that for $z \in D$, Re $(p(z) + \alpha z p'(z)) > \beta$.

Then for $z \in D$,

Re
$$p(z) > 1 + 2(1-\beta) \sum_{n=1}^{\infty} \frac{(-1)^n}{1+\alpha n}$$
.

Proof of Theorem. From (1) we have

(4)
$$F'_{c}(z) + \frac{1}{1+c} z F''_{c}(z) = f'(z),$$

and so using the lemma with $\alpha = 1/(1+c) > 0$, we obtain (5) Re $F'_c(z) > 1+2(1-\beta)(1+c)S(1+c) = \mu$ say. Applying the lemma again with $\alpha = 1$ and $\beta = \mu$ gives

Note also that from (4),

 $F'_{c}(z) + zF''_{c}(z) = (1+c)f'(z) - cF'_{c}(z),$

and so since $c \leq 0$, the hypotheses of the theorem and (5) give

(7) Re $\{zF''_{c}(z)+F'_{c}(z)\} > (1+c)\beta-c\mu.$

We now use the Clunie-Jack lemma [2]. Let

$$\frac{zF_c'(z)}{F_c(z)} = \frac{1+w(z)}{1-w(z)}$$

so that w is analytic in D, w(0)=0 and $w(z)\neq 1$. Then

(8)
$$zF''_{c}(z)+F'_{c}(z)=\frac{F_{c}(z)}{z}\left[\left(\frac{1+w(z)}{1-w(z)}\right)^{2}+\frac{2zw'(z)}{(1-w(z))^{2}}\right].$$

Thus we need to show that |w(z)| < 1 for $z \in D$. Suppose that there exists $z_0 \in D$ such that for $|z| \le |z_0|$, $\max |w(z)| = |w(z_0)| = 1$. Then the Clunie-Jack lemma implies that $z_0 w'(z_0) = kw(z_0) = ke^{i\theta}$ for $0 < \theta < 2\pi$ and where $k \ge 1$. With $z = z_0$, it follows from (8) that

$$\begin{split} \operatorname{Re} \left\{ z_0 F_c''(z_0) + F_c'(z_0) \right\} &= \operatorname{Re} \left\{ \frac{F_c(z_0)}{z_0} \left[\left(\frac{1 + e^{i\theta}}{1 - e^{i\theta}} \right)^2 + \frac{2k e^{i\theta}}{(1 - e^{i\theta})^2} \right] \right\} \\ &\leq - \frac{k}{2 \sin^2(\theta/2)} \operatorname{Re} \frac{F_c(z_0)}{z_0}. \end{split}$$

320

Since $(1-\mu) \log (4/e) + \mu > 0$ and $k \ge 1$,

$$\operatorname{Re}\left\{z_{0}F_{c}^{\prime\prime}(z_{0})+F_{c}^{\prime}(z_{0})\right\} \leq -\frac{1}{2}\left[(1-\mu)\log\frac{4}{e}+\mu\right] = (1+c)\beta-c\mu,$$

where we have used (6). Thus at $z = z_0$ we have a contradiction to (7) and so the result is proved.

Remarks. 1. When c=0, (3) reduces to $3\beta+(1-\beta)(2-\log(4/e))$ $\log(4/e)=0$, which is the result in [5].

2. For $-1 < c \le 0$, the value of β in (3) is smaller than the value β in (2).

References

- S. D. Bernardi: Convex and starlike univalent functions. Trans. Amer. Math. Soc., 135, 429-446 (1969).
- [2] I. S. Jack: Functions starlike and convex of order α . J. London Math. Soc., 3, 469-474 (1971).
- [3] J. Krzyz: A counter example concerning univalent functions. Folia Soc. Scient. Lubliniensis, Mat. Fiz. Chem., 2, 57-58 (1968).
- [4] M. Nunokawa: On starlikeness of Libera transform. Complex Variables, 17, 79-83 (1991).
- [5] M. Nunokawa and D. K. Thomas: On the Bernardi integral operator (to appear).
- [6] R. Singh and S. Singh: Starlikeness and convexity of certain integrals. Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 35, 45–47 (1981).
- [7] R. Singh and V. Singh: Convolution properties of a class of starlike functions. Proc. Amer. Math. Soc., 106, 145-152 (1989).