79. A Class of Inclusion Theorems Associated with Some Fractional Integral Operators ${ }^{\text {t }}$

By Yong Chan Kim,*) Young Soo Park,**) and
H. M. SRivastava***)
(Communicated by Shokichi Iyanaga, m. J. A., Nov. 12, 1991)

In the present paper the authors prove several inclusion theorems for some interesting subclasses of analytic functions involving a certain family of fractional integral operators. The corresponding results for the Hardy space $\mathscr{A}^{p}(0<p \leqq \infty)$ follow as corollaries of these theorems. Some applications to the generalized hypergeometric functions are also considered.

1. Introduction. Let \mathcal{A} denote the class of functions $f(z)$ normalized by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathcal{Q}=\{z:|z|<1\} .
$$

Definition 1. A function $f(z) \in \mathscr{A}$ is said to be in the class $\mathcal{R}(\gamma)$ if it satisfies the inequality:

$$
\operatorname{Re}\left\{f^{\prime}(z)\right\}>\gamma \quad(z \in \mathcal{G} ; 0 \leqq \gamma<1) .
$$

The class $\mathcal{R}(0)$ was studied systematically by MacGregor [6] who indeed referred to numerous earlier investigations involving functions whose derivative has a positive real part. Various interesting subclasses of \mathcal{A} associated with the class $\mathcal{R}(\gamma)$ were considered elsewhere by (among others) Sarangi and Uralegaddi [11], Owa and Uralegaddi [8], and Srivastava and Owa [12].

Let \mathscr{I} be the subclass of \mathscr{A} consisting of functions of the form:

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n} \tag{1.2}
\end{equation*}
$$

and denote by $\mathscr{R}^{*}(\gamma)$ the class obtained by taking the intersection of the classes $\mathscr{R}(\gamma)$ and \mathscr{T}; that is,

$$
\begin{equation*}
\mathcal{R}^{*}(\gamma)=\mathscr{R}(\gamma) \cap \mathscr{I} \quad(0 \leqq \gamma<1) \tag{1.3}
\end{equation*}
$$

Finally, let $\mathcal{S}^{p}(0<p \leqq \infty)$ denote the Hardy space of analytic functions $f(z)$ in U, and define the integral means $M_{p}(r, f)$ by

[^0]\[

M_{p}(r, f)= $$
\begin{cases}{\left[\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right]^{1 / p}} & (0<p<\infty) \tag{1.4}\\ \max _{|z| \leqq r}|f(z)| & (p=\infty)\end{cases}
$$
\]

Then, by definition, an analytic function $f(z)$ in U belongs to the Hardy space $\mathscr{A}^{p}(0<p \leqq \infty)$ if

$$
\begin{equation*}
\lim _{r \rightarrow 1-}\left\{M_{p}(r, f)\right\}<\infty \quad(0<p \leqq \infty) \tag{1.5}
\end{equation*}
$$

For $1 \leqq p \leqq \infty, \mathscr{A}^{p}$ is a Banach space with the norm defined by (cf. Duren [2, p. 23])

$$
\begin{equation*}
\|f\|_{p}=\lim _{r \rightarrow 1-} M_{p}(r, f) \quad(1 \leqq p \leqq \infty) . \tag{1.6}
\end{equation*}
$$

Furthermore, \mathscr{F}° is the class of bounded analytic functions in \mathcal{U}, while \mathcal{S}^{2} is the class of power series $\sum a_{n} z^{n}$ with $\sum\left|a_{n}\right|^{2}<\infty$.

The main object of the present paper is to prove some inclusion theorems for the classes $\mathcal{R}(\gamma)$ and $\mathcal{R}^{*}(\gamma)$ involving a certain family of fractional integral operators. As corollaries of these theorems, we derive the corresponding results for the Hardy space $\mathscr{H}^{p}(0<p \leqq \infty)$. We also consider some relevant applications to the generalized hypergeometric functions.
2. Definitions and elementary properties of the fractional integral operators. Let $\lambda_{j}(j=1, \cdots, l)$ and $\mu_{j}(j=1, \cdots, m)$ be complex numbers such that

$$
\mu_{j} \neq 0,-1,-2, \cdots \quad(j=1, \cdots, m)
$$

Then the generalized hypergeometric function ${ }_{l} F_{m}(z)$ is defined by (cf., e.g., [13, p. 333])

$$
\begin{align*}
{ }_{l} \boldsymbol{F}_{m}(z) & \equiv{ }_{{ }_{l}} F_{m}\left(\lambda_{1}, \cdots, \lambda_{l} ; \mu_{1}, \cdots, \mu_{m} ; z\right) \tag{2.1}\\
& =\sum_{n=0}^{\infty} \frac{\left(\lambda_{1}\right)_{n} \cdots\left(\lambda_{l}\right)_{n}}{\left(\mu_{1}\right)_{n} \cdots\left(\mu_{m}\right)_{n}} \frac{z^{n}}{n!} \quad(l \leqq m+1)
\end{align*}
$$

where $(\lambda)_{n}$ denotes the Pochhammer symbol defined by

$$
(\lambda)_{n}=\frac{\Gamma(\lambda+n)}{\Gamma(\lambda)}=\left\{\begin{array}{cl}
1 & (n=0) \tag{2.2}\\
\lambda(\lambda+1) \cdots(\lambda+n-1) & (n \in N=\{1,2,3, \cdots\})
\end{array}\right.
$$

We note that the ${ }_{i} F_{m}(z)$ series in (2.1) converges absolutely for $|z|<\infty$ if $l<m+1$, and for $z \in \mathcal{U}$ if $l=m+1$.

Making use of the Gaussian hypergeometric function which corresponds to (2.1) when $l-1=m=1$, Srivastava et al. [15] introduced the fractional integral operators $I_{0,2}^{\alpha, \beta, \eta}$ and $J_{0,2}^{\alpha, \beta, \eta}$ defined below (see also Owa et al. [9]).

Definition 2. For real numbers $\alpha>0, \beta$, and η, the fractional integral operator $I_{0, z}^{\alpha, \beta, \eta}$ is defined by

$$
\begin{equation*}
I_{0, z}^{\alpha, \beta, \eta} f(z)=\frac{z^{-\alpha-\beta}}{\Gamma(\alpha)} \int_{0}^{z}(z-\zeta)^{\alpha-1}{ }_{2} F_{1}\left[\alpha+\beta,-\eta ; \alpha ; 1-\frac{\zeta}{z}\right] f(\zeta) d \zeta \tag{2.3}
\end{equation*}
$$

where $f(z)$ is an analytic function in a simply-connected region of the z-plane containing the origin, with the order

$$
f(z)=O\left(|z|^{\varepsilon}\right) \quad(z \rightarrow 0)
$$

where

$$
\varepsilon>\max \{0, \beta-\eta\}-1,
$$

and the multiplicity of $(z-\zeta)^{\alpha-1}$ is removed by requiring $\log (z-\zeta)$ to be real when $z-\zeta>0$.

The operator $I_{0, z}^{\alpha, \beta, \eta}$ is a generalization of the fractional integral operator $I_{0, x}^{\alpha, \beta, \eta}$ introduced by Saigo [10] and studied subsequently by Srivastava and Saigo [14] in connection with certain bounary value problems involving the celebrated Euler-Darboux equation.

Definition 3. Under the hypotheses of Definition 1, let

$$
\begin{equation*}
\alpha>0, \quad \min \{\alpha+\eta,-\beta+\eta,-\beta\}>-2, \quad \text { and } \quad 3 \geqq \frac{\beta(\alpha+\eta)}{\alpha} . \tag{2.4}
\end{equation*}
$$

Then the fractional integral operator $J_{0,2}^{\alpha, \beta, \eta}$ is defined by

$$
\begin{equation*}
J_{0, z}^{\alpha, \beta, \eta} f(z)=\frac{\Gamma(2-\beta) \Gamma(2+\alpha+\eta)}{\Gamma(2-\beta+\eta)} z^{\beta} I_{0, z}^{\alpha, \beta, \eta} f(z) \tag{2.5}
\end{equation*}
$$

In order to derive our main inclusion theorems, we shall also need the following

Lemma (cf. Srivastava et al. [15, p. 415, Lemma 3]). Let α, β, η, and κ be real numbers.

Then

$$
\begin{equation*}
I_{0, z}^{\alpha, \beta, \eta} z^{\kappa}=\frac{\Gamma(\kappa+1) \Gamma(\kappa-\beta+\eta+1)}{\Gamma(\kappa-\beta+1) \Gamma(\kappa+\alpha+\eta+1)} z^{\kappa-\beta} \quad(\alpha>0 ; \kappa>\beta-\eta-1) . \tag{2.6}
\end{equation*}
$$

3. Inclusion theorems. We begin by proving

Theorem 1. Let the parameters α, β, and η satisfy the inequalities:

$$
\begin{equation*}
\alpha>0, \quad \beta<0, \quad \text { and } \quad \eta>\max \{\beta,-\alpha\} . \tag{3.1}
\end{equation*}
$$

Suppose also that the function $f(z)$ defined by (1.2) is in the class $\mathscr{R}^{*}(\gamma)$.
Then

$$
J_{0, z}^{\alpha, \beta, \eta} f(z) \in \mathcal{R}^{*}(\gamma) .
$$

Proof. The hypothesis (3.1) readily implies the inequalities [cf. Equation (2.4)]

$$
\min \{\alpha+\eta,-\beta+\eta,-\beta\}>0 \quad \text { and } \quad \frac{\beta(\alpha+\eta)}{\alpha}<0
$$

which obviously render the operator $J_{0, z}^{\alpha, \beta, \eta}$ well-defined.
Applying (2.2), (2.6), and Definition 3, we obtain

$$
\begin{equation*}
J_{0, z}^{\alpha, \beta, \eta} f(z)=z-\sum_{n=2}^{\infty} \Phi(n)\left|a_{n}\right| z^{n}, \tag{3.2}
\end{equation*}
$$

where, for convenience,

$$
\begin{equation*}
\Phi(n)=\frac{(2-\beta+\eta)_{n-1}(1)_{n}}{(2-\beta)_{n-1}(2+\alpha+\eta)_{n-1}} \quad(n \in N \backslash\{1\}) . \tag{3.3}
\end{equation*}
$$

Noting that $\Phi(n)$ is a non-decreasing function of n, we have

$$
\begin{equation*}
0<\Phi(n) \leqq \Phi(2)<1 \quad(n \in N \backslash\{1\}) . \tag{3.4}
\end{equation*}
$$

It follows from (3.2) and (3.3) that

$$
J_{0, z}^{\alpha, \beta, \eta} f(z) \in \mathscr{T} .
$$

For a function $f(z) \in \mathscr{R}^{*}(\gamma)$, it is known that (cf. [11]; see also [8, p. 196, Lemma 2])

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leqq 1-\gamma \tag{3.5}
\end{equation*}
$$

which, in conjunction with (3.2) and (3.4), yields

$$
\begin{aligned}
\operatorname{Re}\left\{\left[J_{0, z}^{\alpha, \beta, \eta} f(z)\right]^{\prime}\right\} & =1-\operatorname{Re}\left\{\sum_{n=2}^{\infty} n \Phi(n)\left|a_{n}\right| z^{n-1}\right\} \\
& \geqq 1-\sum_{n=2}^{\infty} n \Phi(n)\left|a_{n}\right||z|^{n-1}>1-\sum_{n=2}^{\infty} n\left|a_{n}\right| \\
& \geqq 1-(1-\gamma)=\gamma,
\end{aligned}
$$

whence $J_{0, z}^{\alpha, \beta, \eta} f(z) \in \mathbb{R}^{*}(\gamma)$, completing the proof of Theorem 1.
Corollary 1. Under the hypotheses of Theorem 1,

$$
f(z) \in \mathscr{A}^{p} \quad(0<p<\infty)
$$

Proof. Corollary 1 follows easily from Theorem 1 by virtue of Lemma 3 of Jung et al. [3].

The proof of our next inclusion theorem would make use of the generalized Libera integral operator \mathscr{g}_{c} defined by (cf. Owa and Srivastava [7]; see also [13, p. 338])

$$
\begin{align*}
\mathscr{g}_{c} f \equiv g_{c} f(z) & =\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \tag{3.6}\\
& =z+\sum_{n=2}^{\infty} \frac{c+1}{c+n} a_{n} z^{n} \quad(f \in \mathcal{A} ; c>-1) .
\end{align*}
$$

The operator $g_{c}(c \in N)$ was introduced by Bernardi [1]. In particular, the operator g_{1} was studied earlier by Libera [4] and Livingston [5].

Making use of (3.6), we now prove
Theorem 2. Let the function $f(z)$ defined by (1.1) be in the class $\mathcal{R}(\gamma)$. If $\alpha \in N$ and η is unrestricted, in general, then

$$
J_{0, z}^{\alpha,-\alpha, \eta} f(z) \in \mathscr{R}(\gamma) .
$$

Proof. In terms of the Hadamard product (or convolution), we find from (3.6) and Definition 3 that

$$
\begin{align*}
J_{0, z}^{\alpha,-\alpha, \eta} f(z) & =z+\sum_{n=2}^{\infty} \frac{\alpha+1}{\alpha+n} \cdots \frac{1+1}{1+n} a_{n} z^{n} \tag{3.7}\\
& =g_{\alpha} * g_{\alpha-1} * \cdots * g_{1} f(z) \quad(\alpha \in N ; \eta \text { arbitrary }) .
\end{align*}
$$

Since [cf. Equation (3.6)]

$$
\begin{equation*}
\mathscr{g}_{c} f=(c+1) \int_{0}^{1} t^{c-1} f(z t) d t \quad(f \in \mathcal{A} ; c>-1) \tag{3.8}
\end{equation*}
$$

we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{d}{d z} \mathscr{g}_{c} f(z)\right\}=(c+1) \int_{0}^{1} t^{c} \operatorname{Re}\left\{f^{\prime}(z t)\right\} d t \quad(f \in \mathcal{A} ; c>-1) \tag{3.9}
\end{equation*}
$$

which shows that

$$
\begin{equation*}
f \in \mathcal{R}(\gamma) \Longrightarrow g_{c} f \in \mathcal{R}(\gamma) \quad(c>-1) \tag{3.10}
\end{equation*}
$$

The assertion of Theorem 2 now follows from the observations (3.7) and (3.10).

Corollary 2. Under the hypotheses of Theorem 2,

$$
J_{0, z}^{\alpha,-\alpha, \eta} f(z) \in \mathscr{G}^{\infty} .
$$

Proof. Corollary 2 can be proven easily by applying the relationship
(3.7) and Theorem 3 of Jung et al. [3].

Finally, we give an interesting application of Theorem 2 involving the generalized hypergeometric function ${ }_{l} F_{m}(z)$ defined by (2.1).

Theorem 3. Let the function

$$
z_{l} \boldsymbol{F}_{m}\left(\lambda_{1}, \cdots, \lambda_{l} ; \mu_{1}, \cdots, \mu_{m} ; z\right) \quad(l \leqq m+1)
$$

be in the class $\mathcal{R}(\gamma)$.
Then

$$
\begin{gather*}
z_{l+s} F_{m+s}\left(\lambda_{1}, \cdots, \lambda_{l}, 2, \cdots, 2 ; \mu_{1}, \cdots, \mu_{m}, \alpha_{1}+2, \cdots, \alpha_{s}+2 ; z\right) \in \mathcal{R}(\gamma) \tag{3.11}\\
{\left[\alpha_{j} \in N(j=1, \cdots, s)\right] .}
\end{gather*}
$$

Proof. The assertion (3.11) follows, in view of (3.7) and (3.8), when we make an iterative use of Theorem 2.

A similar use of Corollary 2 yields
Corollary 3. Under the hypothesis of Theorem 3,

$$
\begin{gather*}
z_{l+s} F_{m+s}\left(\lambda_{1}, \cdots, \lambda_{l}, 2, \cdots 2 ; \mu_{1}, \cdots, \mu_{m}, \alpha_{1}+2, \cdots, \alpha_{s}+2 ; z\right) \in \mathcal{H}^{\infty} \tag{3.12}\\
{\left[\alpha_{j} \in N(j=1, \cdots, s)\right] .}
\end{gather*}
$$

Acknowledgements. The present investigation was initiated during the first-named author's visit to the University of Victoria in July 1991. This work was partially supported by a research grant from TGRC-KOSEF of Korea, and by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0007353.

References

[1] S. D. Bernardi: Convex and starlike univalent functions. Trans. Amer. Math. Soc., 135, 429-446 (1969).
[2] P. L. Duren: Theory of H^{p} Spaces. A Series of Monographs and Textbooks in Pure and Applied Mathematics, vol. 38, Academic Press, New York and London (1970).
[3] I. B. Jung, Y. C. Kim, and H. M. Srivastava: The Hardy space of analytic functions associated with certain one-parameter families of integral operators. J. Math. Anal. Appl. (to appear).
[4] R. J. Libera: Some classes of regular univalent functions. Proc. Amer. Math. Soc., 16, 755-758 (1965).
[5] A. E. Livingston: On the radius of univalence of certain analytic functions. ibid., 17, 352-357 (1966).
[6] T. H. MacGregor: Functions whose derivative has a positive real part. Trans. Amer. Math. Soc., 104, 532-537 (1962).
[7] S. Owa and H. M. Srivastava: Some applications of the generalized Libera integral operator. Proc. Japan Acad., 62A, 125-128 (1986).
[8] S. Owa and B. A. Uralegaddi: An application of the fractional calculus. J. Karnatak Univ. Sci., 32, 194-201 (1987).
[9] S. Owa, M. Saigo, and H. M. Srivastava: Some characterization theorems for starlike and convex functions involving a certain fractional integral operator. J. Math. Anal. Appl., 140, 419-426 (1989).
[10] M. Saigo: A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. College Gen. Ed. Kyushu Univ., 11, 135-143 (1978).
[11] S. M. Sarangi and B. A. Uralegaddi: The radius of convexity and starlikeness for certain classes of analytic functions with negative coefficients. I. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8) 65, 38-42 (1978).
[12] H. M. Srivastava and S. Owa: Certain classes of analytic functions with varying arguments. J. Math. Anal. Appl., 136, 217-228 (1988).
[13] - (eds.) : Univalent Functions, Fractional Calculus, and Their Applications. Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, and Toronto (1989).
[14] H. M. Srivastava and M. Saigo: Multiplication of fractional calculus operators and boundary value problems involving the Euler-Darboux equation. J. Math. Anal. Appl., 121, 325-369 (1987).
[15] H. M. Srivastava, M. Saigo, and S. Owa: A class of distortion theorems involving certain operators of fractional calculus. ibid., 131, 412-420 (1988).

[^0]: †) 1991 Mathematics Subject Classification. Primary 30C45, 26A33; Secondary $33 \mathrm{C} 20,30 \mathrm{H} 05$.
 *) Department of Mathematics, College of Education, Yeungnam University, Korea.
 **) Department of Mathematics, College of Natural Sciences, Kyungpook National University, Korea.
 ***) Department of Mathematics and Statistics, University of Victoria, Canada.

