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A Class of Inclusion Theorems Associated with
Some Fractional Integral Operators

By Yong Chan KIM,*) Young Soo PARK,**) and
H. M. SRIVASTAVA***)

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1991)

In the present paper the authors prove several inclusion theorems for
some interesting subclasses of analytic functions involving a certain family
of fractional integral operators. The corresponding results for the Hardy
space qt (0poo) follow as corollaries of these theorems. Some appli-
cations to the generalized hypergeometric functions are also considered.

1. Introduction. Let denote the class of functions f(z) normalized
by

(1.1) f(z)= z+ an zn,
n=2

which are analytic in the open unit disk

cU-- {z :lzl< 1}.
Definition 1. A function f(z) e f is said to be in the class (,) if it

satisfies the inequality"

Re{f’(z)}>, (z e cU;
The class (0) was studied systematically by MacGregor [6] who indeed

referred to numerous earlier investigations involving functions whose
derivative has a positive real part. Various interesting subclasses of
associated with the class .@ (-) were considered elsewhere by (among others)
Sarangi and Uralegaddi [11], Owa and Uralegaddi [8], and Srivastava and
Owa [12].

Let be the subclass of 7/consisting of functions of the form:

(1.2) f(z)=z- lanlz,
and denote by *(,) the class obtained by taking the intersection of the
classes (,) and ; that is,
(1.3) _R*(’)=_@(’) (0,< 1).

Finally, let q(p (0p=< co) denote the Hardy space of analytic tunctions
f(z) in cU, and define the integral means M(r, f) by

) 1991 Mathematics Subject Classification. Primary 30C45, 26A33; Secondary
33C20, 30H05.

* Department of Mathematics, College of Education, Yeungnam University,
Korea.

**) Department of Mathematics, College of Natural Sciences, Kyungpook National
University, Korea.

*** Department of Mathematic a.d Statistics, University of Victoria, Canada.



314 Y.C. KM, Y. S. P.K, and H. M. SPVASTAVA [Vol. 67 (A),

(1.4) M(r, f)----
]max If(z)] (p= c).

Then, by definition, an analytic function f(z) in belongs to the Hardy
space
(1.5) lim {M(r,f)}< (0<p).

rl-

For lp, is a Banach space with the norm defined by (cf. Duren
[2, p. 23])
(1.6) ]f=lim M(r, f) (lp).

rl-

Furthermore, is the class of bounded analytic functions in , while
5 is the class of power series

The main object of the present paper is to prove some inclusion
theorems for the classes t(r) and t*(r) involving a certain family of
fractional integral operators. As corollaries of these theorems, we derive
the corresponding results for the Hardy space (0<p). We also
consider some relevant applications to the generalized hypergeometric
functions.

2. Definitions and elementary properties of the fractional integral
operators. Let (]=1, ..., l) and Z (]=1, ..., m) be complex numbers
such that

0, -1, -2, (]=l, ., m).
Then the generalized hypergeometric function F(z) is defined by (cf., e.g.,
[13, p. 333])
(2.1) F(z)F(,, ..., p,, ..., z)

z

where () denotes the Pochhammer symbol defined by

(2.2) (2) F(+n) ( 1 (n 0)
F(2) 2(+l)...(]+n-1) (neN={1,2,3,...}).

We note that the F(z) series in (2.1) converges absolutely for
/<re+l, and for z e if/=m+l.

Making use of the Gaussian hypergeometric unction which corresponds
to (2.1) when/-l=m=l, Srivastava et al. [15] introduced the 2ractional
integral operators I;;, and J;:, defined below (see also. Owa et al. [9]).

Definition 2. For real numbers a>0, fl, and , the fractional integral
operator I}, is defined by

(.)

where Z() is an analytic function in a simply-connected region of he
-lane containing the origin, wih he order

f()=O(l) (0),
where
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>max{0,/-- ]}- 1,
and the multiplicity of (z-)- is removed by requiring log(z-) to be
real when z- 0.

The operator I:, is a generalization o.f the fractional integral operator
I:, introduced by Saigo [10] and studied subsequently by Srivastava and
Saigo [14] in connection with certain bounary value problems involving the
celebrated Euler-Darboux equation.

Definition :3. Under the hypotheses of Definition 1, let

(2.4) 0, min{+i,--fl+,--}>--2, and 3>= /(+]).

Then the fractional integral operator J;, is defined by

(2.5) J;’ f(z)= F(2--fl)F(2++]) zi:, f(z)"
F(2-- fl -t- ])

In order to derive our main inclusion theorems, we shall also need the
ollowing

Lemma (cf. Srivastava et al. [15, p. 415, Lemma 3]). Let , fl, , and
be real numbers.

Then

(2.6) i;,z F(+I)F(-fl+]+I) z_ (a0;fl--]-l).
F(- fl+ 1)F(+a+]+ 1)

3. Inclusion theorems. We begin by proving
Theorem 1. Let the parameters , fl, and satisfy the inequalities"

(3.1) 0, flO, and ]>mx{fl, --a}.
Suppose also that the function f(z) defined by (1.2) is in the class *().

Then
J;’ f(z) e ..*(’).

The hypothesis (3.1) readily implies the inequalities [cf. Equ-Proof.
ation (2.4)]

min{a+, --fl+r], --fl}>0 and fl(a+r])0,
a

which obviously render the operator J;, well-defined.
Applying (2.2), (2.6), and Definition 3, we obtain

(3.2) J,,, f(z)=z--,, (n)la,,Iz’,

where, for convenience,

(3.3) q(n) (2- fl+ r])_l(1) (n e N\ {1}).
(2-- fl)_1(2 +a+)_l

Noting that q(n) is a non-decreasing function of n, we have
(3.4) 0<q(n)q(2)<l (n e N\{1}).
It follows from (3.2) and (3.3) that

J:,f(z) e .
For a function f(z)e *(,), it is known that (cf. [11]; see also. [8, p.

196, Lemma 2])
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(3.8)

we have

(3.5)

which, in conjunction with (3.2) and (3.4), yields

{[J;’ f(z)]’}Re

>=1-- n(n)Ial{zl->l- na

whence J;,, f(z)e *(r), completing the proof f Theorem 1.

Corollary 1. Under the hypotheses of Theorem 1,
f(z) e (O<p< ).

Proof. Corollary 1 follows easily from Theorem 1 by virtue of Lemma
3 of Jung et al. [3].

The proof of our next inclusion theorem would make use of the
geaeralized Libera integral operator defined by (cf. Owa and Srivastava
[7] see also [13, p. 338])

(3.6)
Z

=z+.c+laz (f e; c-l).

The operator (c e N) was introduced by Bernardi [1]. In particular, the
operator , was studied earlier by Libera [4] and Livingston [5].

Making use of (3.6), we now prove

Theorem 2. Let the function f(z) defined by (1.1) be in the class ().
If a e N and is unrestricted, in general, then

]::, y(z) e ().
Proof. In terms of the Hadamard product (o.r convolution), we find

from (3.6)and Definition 3 that

(3.7) J;;,.f(z)=z+ a+.. 1+1 az

= ,
_

, f(z) (a e N; arbitrary).

Since [cf. Equation (3.6)]

t-’f(zt)dt (fe; c>-1),f=(c+l)
J0

(3.9) Re(-f(z)} (c+ l) fl tRe{f’(zt)}dt (fe ; c-l),

which shows that
(3.10) f e _q (r) ---=-= vqcf e (r) (c> 1).

The assertion of Theorem 2 now follows from the observations (3.7)
and (3.10).

Corollary 2. Under the hypotheses of Theorem 2,
J;::,f(z) e.

Proof. Corollary 2 can be proven easily by applying the relationship
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(3.7) and Theorem 3 of Jung et al. [3].
Finally, we give an interesting application of Theorem 2 involving the

generalized hypergeometric function F(z) defined by (2.1).
Theorem 3. Let the function

z F(, ., ;/, ...,/ z) (lGm+ 1)
be in the class ().

Then
(3.11) zt/sF/s(l, ., t, 2, ., 2 /l, ., /, a, +2, ", G+2 z) e -(’)

[c e N (]--1, ..., s)].
Proof. The assertion (3.11) ollows, in view of (3.7) and (3.8), when

we make an iterative use of Theorem 2.
A similar use of Corollary 2 yields
Corollary 3. Under the hypothesis of Theorem 3,

(3.12) z t/F/(21, ", 2, 2, 2 ;/1, .,/, a +2,. ., c+2 z) e d(

[ e N (] 1, ..., s)].
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