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§1. Introduction and results. This paper is a sequel to the previous
ones [5] and [6]. We continue the study of the L*-concentration in solutions
of initial value problem for the nonlinear Schrodinger equation:

{(NLS) 2i%7z_+du+ lufu=0,  (t x)e R*XRY,
(C

Iv) w0, x)=uy(2), zeR",

where i=+—1, u, ¢ H'=H'(R"), 4 is the Laplacian on R".

The local existence theory for (Cp) is well known ([1], [8]); there are
T, € (0, o] (maximal existence time) and a unique solution w(-) € C([0, T,);
H*Y) of (Cp). Furthermore u satisfies
1.1 (@) l|l=Iul|,
1.2) Eu®)=|Fu@®) |~ @ /o) |u®) ;= E(u,),
for tel0,7,). Here ¢=2+4/N and ||| (|-||,) denotes the L*(R™)(L’(R"))-
norm.

It is also well-known (see [2]) that, for some u,, the solution u shows
the singular behavior (blow-up) that
1.3) }EITIIIIVu(t)II=|!u(t)IIa=w

for some T, € (0, co].

Of physical importance is the case N=2, when (NLS) is a model of the
stationary self-focusing of a laser beam propagating along the t-axis. It
is considered that the singular behavior (1.3) corresponds to the focus of
the beam. Thus our purpose is to obtain more precise analysis of the be-
havior of the singular solution w(t) of (Cp) as t 1 T,,. Because of its mathe-
matical interest however, we intend to develop a theory for arbitrary
dimensions N. It should be noted that (NLS) has a remarkable property
that it is invariant under the pseudo-conformal transformations.

In [6], we proved ; ‘

Proposition A. Suppose that the solution u(t) of (Cp) satisfies (1.3).
Let (t,), be any sequence such that t,—T, as n—co. Set
(A.1) .=t =1]||u(t,)|:? (—>0 as n—>0),

(A.2) u,(t, 2)=S8, u(t, ©)=22""u(t, 2,2).

Then there exists a subsequence of (t,), (we still denote it by (t,),) which
satisfies the following properties: one can find L e NU{oco} and sequences
W), in RY for 1<j< L such that

*  In memory of my father.
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(A.3) lim |y} —yi|=c0 G+k),

(A.4) A f;,;un(tn, z+y)—>f* weakly in H*,
(A.5) F=U =9 +yd)—> weakly in H',
(A.6) Lim{E(f)—E(fi—f)}=E(f),

N0

A6  lLmE(fi—f)=— é E(f,

N—>oo

@D lmlim|fi- =0 L=+ o),

A7 lim] fE—f*,=0 (L< + o0),

(A.8)  limlim {sup j I« f,f;—ff)(x)rdx}=o if L= + oo,
j—=L n—o \yeRY JB(y;R)

(A.8 lim {sup j |(FE— PR dw} =0  if L<+ oo,
n—ow \y€RN JB(y;R)

where R is any positive constant and B(y; R)={x e RY; |x—y|<R}.

Using this proposition and the characterization of @ (see (B.1) below),
we also proved in [6]

Theorem B. Let Q be a ground state (non trivial minimal L* norm)
solution of
(B.1) 4Q—Q+|Q["*Q=0, Qe H'.
Under the same assumptions and notations of Proposition A, then there
exists a subsequence of (t,), (we still denote it by (t,),) which satisfies the
following properties: one can find a sequence (y,), in R" such that, for any
>0, there is a positive constant K ;

(B.2) lim inf 1S, u(t,, t+y) fde=1—e)| QI
n—oo B(R)

for any R=K. In other words,

(B.3) lim inf |u(t,, ) [fde=1—e) || Q]
n->00 By,

where B,={x e R"; |x—y,4,|<R1,} VR=K).

Remarks. (1) If |u]|<||@Q|, the corresponding solution wu(t) exists
globally in time; u(.) € C([0, o) ; HYN L=(0, oo ; HY). The initial datum u,=
Q=) exp (—i|2[*/2) (|u,||=|| Q) leads to the solution u(¢) which satisfies (1.3)
with T,=1 and |u(t, )} approaching to ||Q|*(x) (Dirac measure) as t—1
(see [7] and [9]).

(2) The spatial dilation operator S; was introduced by Weinstein for
the first time in [9]. Our scaling function 1, however, is different from the
one in [9].

In this paper, we extend Theorem B to show

Theorem C. Suppose that the solution u(t) of (Cp) satisfies (1.3).
Set

(C.1) A =1/lu@® ",

(C.2) Su(t, x) =1""u(t, 1z),

(C.3) A=sup lim inf {sup [S:u(t, ©) ]"dw}.
R>0 t1Tm yERN JB(y; R)
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If A=1, then, for any 0<e<1, there are constants K>0, T,>0 and 7(-) e
C(T,, T,); RY) such that

(C.4) [, 1Swutt, s+1@)FE>A-9 QI
for any R=K. In other words,
(C.5) L lu(t, ©)Pdz>1—e) | QP

where B,={x e R"; |x—r®)A)|<Ri(t)} VR =K).

Remarks. (1) Suppose that ||| =||Q| and corresponding solution
u(t) of (Cp) satisfies (1.3). Then we have A=1.

(2) Suppose that u, is radially symmetric, N=2 and corresponding
solution u(t) of (Cp) satisfies (1.83). Then we have A=1. In this case, we
can take r=0.

(8) The condition A=1 (see (C.3)) implies that L=1 in Proposition A
for any sequence t,—7,. We may regard r(t) in Theorem C as a “ray
trajectory” for the beam described by the solution u(t) of (Cp) with A=1.

§2. Proof of Theorem C. Suppose that the solution u(¢) to (Cp)
satisfies (1.3) and
@.1) 1—sup lim inf {sup L ISioutt x)l"dw}.

BR>0 t1Tm YERY J B(y;
For simplicity, we suppose N>=3. We will use the notations;

B,=B(y; R)={xe R";|2—y|<R}, B,,=B@y®); R),
u,(t, w)-_—’sx(z)u(t, x),

P,(t; Q)=I |u(t, 2)|°do for any Q CR”.
2
We recall that 2=(t)=1/||u(¢)|?>. One can see that

(2.2) lwl=lul=lul,  lwl.,=1.
Moreover we have that

(2.3) E(u ) = 2 E (u(t)) =2 E (uy) —>0

as t—T,. From (2.2), (2.3) and Sobolev’s inequality, one has
2.4 =SV, || <8

for sufficiently small 1, where S is the Sobolev best constant and ||« de-
notes the L*¥/¥-D_pnorm.

We start with

Proposition 2.1. For any 0<e<1l, there are constants K>0, T,>0
and o function 7(-) € C(T,, T,); R") such that

2.5) L(R) ut, e+ 1A de>1—e,  telTy, Ty,

for any R=K.

For the proof of this proposition, we prepare

Lemma 2.2. Let y, be a point such that P, (Ty; B(yy; R)>1—e/2
holds true at a time Ty €10, T,) for some constant R>0. Then there exist
positive constants 6 and I’ such that if |t—T4|<6 and |y,—y|<I', then
P,(t; B(y; R)>1—¢/2.

Proof of Lemma 2.2. Let A’=P (T, ; B(y4; R)) and B,=B,,, and put
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(2.6) 3'=A"—(1—¢/2).
We note that
(2.7 P(T,; ByNB)+P,(Ty; By—B)=P,(T,; By=4/,

for any y e R, For ¢>0 defined in (2.6), there is a positive constant I"
such that if |y, —y|<I", then it holds for any ¢ that
2.8 P,(;B,—B<¢,
since we have, by Holder’s inequality and (2.4)
P,(t; B,—B)"*< u(B,—B,)"" || < Spu(B,— B

On the other hand, since u, € C([0, (T, +T,)/2]; L*) (uniformly continuous
in t), there exists a positive constant 4 such that if |T,—¢|<6, one has
(2.9) —+P,(Ty; B,NBY)<P,t; B,NB,)
(2.10) —d+P,(Ty; B,—B,)<P,(t; B,—B,).
Here we note that 6 depends on T,. Therefore if |T,—¢|<6 and |y,—v|
<I', we have, adding (2.9) and (2.10),
(2.11) P,(t;B)>P,(T,;B,)—2¢

=P, (Ty; B,NB)+P,(Ty; B,—B,)—2¢

>A'—P(T,; By—B)+P,(Ty; B,—B,)—2¢.
Here we have used (2.7). By (2.6), (2.8) and (2.11), we obtain
2.12) P,(t;B)>A'"—3/>1—¢/2,
if |Ty—t|<6 and |y—y,|<I.

Proof of Proposition 2.1. We have by the definition (2.1) that, for
any ¢>0, there exist K>0, T',>0 and y(t) € R" for te[T,, T,,) such that
(2.13) P,(t; B(y@t); R)>1—¢/2, telT,T,), R=K.

We define

T*=sup{T [Ty, T.); P,(T; By(Ty); R)>1—¢/2}.
By Lemma 2.2, T*>T,. If T*=T,, nothing to prove. We suppose T*<
T.. On the other hand, we have by Lemma 2.2,
(2.149) P,(t; By(T*); R)>1—¢/2, tel[T*—0, T*]
for some §>0. For brevity, we put I*=[T*—0, T*], y*=y(T*), y.=y(T\),
B*=B(y*; R) and B,=B(y,; R).

Claim 1. (B*X{EDN By X{th+#0 for any t e I*.

Proof. Suppose that (B*x{t) N (B, x{th=0 for some tel*. Then
we have, by the definition of T* and (2.14).

1=|[u,s2P,(t; B)+P,(t; B> —¢/2)+ (1 —e/2)=(2—¢)
for t e I*, so that we get (1 —¢)<<0. Thus we reach a contradiction.

Claim 2. P,¢t; B*NB)>1—¢, te[T*—6, T*).

Proof. We have, by (2.14), the definition of T* and the above claim,

1=||w,|l;=P,(t; B*UB,)
=P,(t; B¥)+P,(t; By)—P,(t; B*NB,)>2—e)—P,(t; B*NB,).
Thus one has
P,(t; B*xNB)>1—¢, te[T*—@, T*).

Now we define
2.15) {T(t)=y*, telT,, T*—06)

Q) =y*+{(T*—0) [0}yx—y*),  telT*—0, T*).
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One can easily see that
(2.16) T() (S C([Toy T*] H RN),
2.17) P,(t; BOd@); R)>1—¢, telT,, T*]
by Claim 2 and (2.14), since B(r(t) ; R)DB* N B,,.
We note that there is a positive constant ¢’ (<@) such that
(2.18) P,(t; Bo®); R)>1—¢/2, tel[T*—¢', T*]
by Lemma 2.7.
Hence repeating the above argument starting with y* instead of y,,
we can obtain a continuous path 1(t); [Ty, T,.)—R" which satisfies (C.4).
To conclude the proof of Theorem C, we must show the following
lemma for the “path” 7(£) constructed in Proposition 2.1.
Lemma 2.3. There are constants K,>0, T,>0 such that

(2.19) L(R) |u,(t, z+T7@)[[de>A—o) | QIF, telT, T,),
for any R=K,.

Proof. Suppose the contrary, so that, any n e N, there are R,>n and
t,e(T,—1/n,T,) such that

(2.20) j o [t T TED Fm= A= QI

According to this sequence (¢,),, we put uiL(¥)=u, (t,, 2+7(t,)).

On the other hand, by virtue of the first concentration-compactness
lemma due to Lions (see [4; Appendix]) together with (2.1) and the latter
of (2.2), we can find a sequence (y,), in R" for the above (¢,), such that for
any >0,

2.21) 1>j [ty 2y dz>1—y,
B(R)

for sufficiently large R>0 and n. We put fi(®)=wu, (t., 2+¥,).

Then (), and (f}), are bounded sequence in H' and they converges
weakly to non trivial elements in H*, since we have (2.5) and (2.21). This
is valid only for a subsequence. We shall often extract subsequence with-
out explicitly mentioning this fact. Since >0 is arbitrary, f% converges
to feH' strongly in L° by the latter of (2.2). One can easily see that
SUP,s [T(E)—¥Y.|<oo by (2.5) and (2.21), so u. also converges to u'e H!
strongly in L°. This corresponds to the case L=1 in Proposition A. Thus
we have E(u)<0 by (A.6) and (2.8), so that ||u'||=||Q| follows from the
characterization of @ (see e.g. [6; Lemma 1.1]). Therefore letting n— oo
in (2.20) (using Fatou’s lemma), we reach a contradiction.

§3. Generalizations. The nonlinear term |u|*u can be replaced by
the more general one F'(u) treated in [5] and [6]; typical examples of F' are
(NF) F)=|u""u+2|ul"'u, 2eR, 1<q<1+4/N.

For generic blow-up solution, using Proposition A and the argument
performed in [5], we can prove

Theorem D. Suppose that the solution u(t) to (Cp) with the non-
linear term (NF) satisfies (1.3). Set
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(D.1) A@)=1/lu@®il:*,
(D.2) Su(t, ) =1""u(t, 2z),
(D.3) A=sup liminf {sup j 1S yult, ) lzdx}.
R>0 t1Tm YyERN J B(y; R)

Then we hove AZ||Q|F and, for any 0<e<1, there are constants K>O0,
T,>0 and a right continuous function y € L ([T,, T,) ; RY) such that

@4 [, ISwut, s+y®)Fde>A-94,  tell, T,
for any R=K.
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