54. A Note on Multivalent Functions

By Tadayuki Sekine*) and Shigeyoshi Owa**)

(Communicated by Shokichi Iyanaga, m. J. A., June 11, 1991)

1. Introduction. Let $A_{p}(n)$ be the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+n}^{\infty} a_{k} z^{k} \quad(p \in N=\{1,2,3, \cdots\} ; n \in N) \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z:|z|<1\}$. A function $f(z) \in A_{p}(n)$ is said to be in the class $A_{p}(n, \alpha)$ if it satisfies

$$
\begin{equation*}
\left|\frac{f(z)}{z^{p}}-1\right|<1-\alpha \tag{1.2}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$ and for all $z \in U$.
Recently, Saitoh [3] has studied the class $A_{p}(n, \alpha)$ and proved some properties for functions belonging to $A_{p}(n, \alpha)$. Our main result in this paper contains a result due to Saitoh [3, Theorem 1].
2. Main result. We derive the main result by using the following lemma due to Miller and Mocanu [2] (also, due to Jack [1]).

Lemma. Let $w(z)=w_{n} z^{n}+w_{n+1} z^{n+1}+\cdots$ be regular in U with $w(z) \not \equiv 0$ and $n \geq 1$. If $z_{0}=r_{0} e^{i \theta_{0}}\left(r_{0}<1\right)$ and

$$
\begin{equation*}
\left|w\left(z_{0}\right)\right|=\sum_{|z| \leq r_{0}}|w(z)| \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=m w\left(z_{0}\right) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z_{0} w^{\prime \prime}\left(z_{0}\right)}{w^{\prime}\left(z_{0}\right)}\right) \geq m \tag{2.3}
\end{equation*}
$$

where $m \geq n \geq 1$.
Theorem. If $f(z) \in A_{p}(n)$ with $f(z) \not \equiv z^{p}$ satisfies

$$
\begin{equation*}
\left|\beta \frac{f(z)}{z^{p}}+\gamma \frac{f^{\prime}(z)}{z^{p-1}}-(\beta+p \gamma)\right|<(1-\alpha)\{\beta+(p+n) \gamma\} \tag{2.4}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1), \beta(\beta \geq 0), \gamma(\gamma \geq 0), \beta+\gamma>0$, and for all $z \in U$, then $f(z) \in A_{p}(n, \alpha)$.

Proof. Defining the function $w(z)$ by

$$
\begin{equation*}
\frac{f(z)}{z^{p}}-1=(1-\alpha) \omega(z) \tag{2.5}
\end{equation*}
$$

for $f(z) \in A_{p}(n)$, we see that $w(z)=w_{n} z^{n}+w_{n+1} z^{n+1}+\cdots$ is regular in U and $w(z) \not \equiv 0$. It follows from (2.5) that

$$
\begin{equation*}
\frac{f^{\prime}(z)}{z^{p-1}}=p+(1-\alpha)\left\{p w(z)+z w^{\prime}(z)\right\} . \tag{2.6}
\end{equation*}
$$

[^0]Therefore, we have

$$
\begin{equation*}
\beta \frac{f(z)}{z^{p}}+\gamma \frac{f^{\prime}(z)}{z^{p-1}}-(\beta+p \gamma)=(1-\alpha)\left\{(\beta+p \gamma) w(z)+\gamma z w^{\prime}(z)\right\} . \tag{2.7}
\end{equation*}
$$

Suppose that there exists a point $z_{0} \in U$ such that

$$
\max _{|z| \leq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1 .
$$

Then, applying the lemma and letting $w\left(z_{0}\right)=e^{i \theta_{0}}$, we obtain

$$
\begin{align*}
\left|\beta \frac{f\left(z_{0}\right)}{z_{0}{ }^{p}}+\gamma \frac{f^{\prime}\left(z_{0}\right)}{z_{0}^{p-1}}-(\beta+p \gamma)\right| & =(1-\alpha)(\beta+p \gamma+m \gamma) \quad(m \geq n \geq 1) \tag{2.8}\\
& \geq(1-\alpha)\{\beta+(p+n) \gamma\},
\end{align*}
$$

which contradicts with our condition (2.4). This shows that $|w(z)|<1$ for all $z \in U$, that is,

$$
\begin{equation*}
\left|\frac{f(z)}{z^{p}}-1\right|<1-\alpha \quad(z \in U) . \tag{2.9}
\end{equation*}
$$

This completes the proof of the theorem.
Letting $\gamma=\beta$ in Theorem, we have
Corollary 1. If $f(z) \in A_{p}(n)$ with $f(z) \not \equiv z^{p}$ satisfies

$$
\begin{equation*}
\left|\frac{f(z)}{z^{p}}+\frac{f^{\prime}(z)}{z^{p-1}}-(p+1)\right|<(1-\alpha)(p+n+1) \quad(z \in U) \tag{2.10}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$, then $f(z) \in A_{p}(n, \alpha)$.
Making $\beta=1-(p+n) \gamma$, Theorem leads to
Corollary 2. If $f(z) \in A_{p}(n)$ with $f(z) \not \equiv z^{p}$ satisfies

$$
\begin{equation*}
\left|\{1-(p+n) \gamma\} \frac{f(z)}{z^{p}}+\gamma \frac{f^{\prime}(z)}{z^{p-1}}-(1-n \gamma)\right|<1-\alpha \tag{2.11}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1), \quad \gamma(0 \leq \gamma<1 /(p+n))$ and for all $z \in U$, then $f(z) \in A_{p}(n, \alpha)$.

Further, taking $\gamma=1-\beta$ in Theorem, we have
Corollary 3 ([3]). If $f(z) \in A_{p}(n)$ with $f(z) \not \equiv z^{p}$ satisfies

$$
\begin{equation*}
\left|\beta\left(\frac{f(z)}{z^{p}}-1\right)+(1-\beta)\left(\frac{f^{\prime}(z)}{z^{p-1}}-p\right)\right|<(1-\alpha)\{(p+n)-(p+n-1) \beta\} \tag{2.12}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1), \beta(0 \leq \beta \leq 1)$, and for all $z \in U$, then $f(z) \in A_{p}(n, \alpha)$.

References

[1] I. S. Jack: Functions starlike and convex of order α. J. London Math. Soc., 3, 469-474 (1971).
[2] S. S. Miller and P. T. Mocanu: Second order differential inequalities in the complex plane. J. Math. Anal. Appl., 65, 289-305 (1978).
[3] H. Saitoh: On certain class of multivalent functions (preprint).

[^0]: *) Department of Mathematics, College of Pharmacy, Nihon University.
 **) Department of Mathematics, Kinki University. 1990 Mathematics Subject Classifications. 30C45.

