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1. Introduction and result. Consider a map F: C2--.C defined by

( 1 ) F (x, y) >t(y, ax+p(y)),
where a is a nonzero constant and p(y) is a polynomial of degree d_2.
The map F is called a twisted elementary map (Kimura [2]). We denote
by F the k-times iteration of F. Assume that z0=t(x0, Y0) e C is a periodic
point of F of period k, i.e. a fixed point of F. Let J be the Jacobian
matrix of F at z0. Let p be an eigenvalue of J, V"-’t(Vl, V2) e C an eigen-
vector of J corresponding to the eigenvalue p. The eigenvalue p is said to
be unstable (resp. stable) if [pl>l (resp. if Ipl<l).

Definition (Kimura [2]). Suppose that p is unstable (resp. stable). A
holomorphic map :C--C is called an unstable (resp. a stable) curve
through z0 if the following two conditions hold"

( 2 ) (pt)=F((t)) for t C
( 3 ) (t) Zo+ vt + O(t) as t ;0.

If none of pn (n=2, 3, 4,...) is an eigenvalue of J, it is known that
there exists an unstable (a stable) curve through z0 ([2]). The functional
equation (2) is called the Poincarg equation, since Poincar6 [3] was the first
to consider this type of functional equation (cf. Dixon-Esterle [1]). In this
paper we shall establish the following:

Main theorem. Each component of the (un) stable curve E(t) is an
entire function of order and of finite type, where r is given by

log d
Ilog[l’l

Remark. In a special ease k=l, the result is already shown in [2].
As we shall see below, however, we require much subtler estima.tes than
those in [2] to establish the theorem for k>l.

2. Notation. Throughout this paper we employ the ollowing nota-
tion.

(a) Let --(, ]): C-C be holomorphie maps defined reeursively
by 0(t)=(t) and
( 4 ) (t) F(_(-t)) for m e Z,
where 2=p/. We put =t(0,..., _,) and =’(]0,’’ ", ]-).

(b) For a k-vector u=(u0, ...,u_) e C, we put Ilull=lu01+." +lu-l
and p(u)=(p(Uo), ..., p(u_)).

(c) We put for r0,
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M(r)=max [$(t)1+1, N(r)=max
Itl Itl

M(r) max (t)II, N(r) max ](t)II,
It[=r It[

(d) We denote by C various positive constants depending only on
a, p(y) and k.

3o Lemmata. We shall give a proo o Main Theorem only in the un-
stable case ]pill; we can treat the stable case in a similar manner. In
order to establish Main Theorem, we shall show the following lemmata
successively.

Lemma 1.

Lemma 2.

log M0(r), log No(r) <_ Cot +C.
k-1, log M(r)>_C2r*--C,.
j=O

Lemma 3. log Mo(r) + log No(r) >_ Cr C.
Lemma 4. log Mo(r), log No(r)>_Cr*-C.
Main Theorem is an easy consequence of Lemma 1 and Lemma 4.
4. Proof of Lemma 1. Put F(x, y)=t(f(x, y), g(x, y)). It is easy to

see that f(x, y) and g(x, y) are polynomials of degree d- and d, respec-
tively. Hence we have l+lf(x,y) I, l+lg(x,y)l<_C0(2+lxl+lyt). Since
E(t) is an unstable curve, we have o(pt)=f(o(t),o(t))and ]0(pt)=
g(o(t),o(t)). Substituting these into the above inequality, we obtain
Mo(Iplr), No(Iplr)<_Co{Mo(r)+No(r)}. So, letting S(r)=Mo(r)+No(r), we
have

S(Iplr)<_ exp. {(d-l)C}S(r).
We see that s(r)=exp (Cr-C) satisfies s(Iplr)=exp ((d-l)C}s(r). As-
sume that C is so large that S(r)<_s(r) or l<_r<_lp]. Then it is easy to
see that S(r) <_ s(r) o.r r_> 1. Hence we have S(r) <_ exp (Cr +C) for r >_ 0.
This shows that log M0(r), log No(r)<_Cr+C, which establishes Lemma 1.

5. Proof of Lemma 2. By (4), (t) is an unstable curve through
z=F(z0). We see that (t)=0(t). Hence it follows from (4) that (t)
=Ai(t) and v(t)=aA(t)+p(A(t)), where A=(a) is a kxk permutation
matrix defined by a=l if i-]=1 (mod k), a=0 otherwise. Eliminating

V, we obtain
( 5 ) n-(t)=p((t))+an(-t).
Since p(y) is a polynomial of degree d, we have Ip(y)l>_Colyl-C. Apply-
ing this estimate to (5), we obtain
( 6 ) (t)II >_ C0 (t) -II (-t)l C.
Since (t) (]=0, 1, ..., k--l) are entire functions not identically zero, I(t)
is a subharmonic function. Hence M(r) is monotonically increasing in r
and tends to +c as r-+c. Thus (6) implies that M(llr)>_CoM(r)-C,M(r)-C. If r is sufficiently large, then so is M(r). Thus we may as-
sume that

M(llr)>_exp{(d-1)C}M(r), M(r)>_2 or r>_ro.
We see that m(r)=exp(Cr-C) satisfies m(12lr)=exp{(d--1)C}m(r). As-
sume that C is so small that M(r)>_m(r) or ro<_r<_llro. We can easily
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show that M(r)>_m(r) for r>_ro. Hence we have
( 7 ) log M(r) >_Cr C.
By the definition of M(r) and M(r), it is evident that M(r)g=M(r).
On the other hand, the following inequality holds for x_>l,

log x_log x k.
=0 \j=O

Combining these inequalities with (7), we obtain :_log M(r)>_Cr-C.
Lemma 2 is thus established.

15. Proof of Lemma :3. We rewrite (4) as
( s ) At) _(t), (t)=p(_(t))+a_(t).
Eliminating , we obtain +(t)=p((t))+a_(-t). If we put @(t)=
(t), then we have +=p()Wa_. It follows that
CO_4C. More loosely, we have

Let us put L(r)=max,,:,O(t) and u(r)=log (C+L(r)). Note that
u(r) is monotonically increasing in r and tends to + as r. It fol-
lows from (9) that u+,gd(u+u_,). Let -a and fl be the roots of the
quadratic equation X-dX-d=O such that 0<a<l and fl>d. Then we
have u+,+aufl(u+u_l). Since 0<a<l and M(r) is monotonically
increasing, this estimate implies

a{log M+,(r)..+ log MAr)}
glog {C+M+,(21"+’r)}+a log {C+M([2Ir)}

g{u,(r)+aUo(r)}
gfl{log (C+M,( 2 [r)) + log (C+Mo(r))}.

Note that (8)implies Vo(t)=,(2t) and hence No(r)=M,(12lr). Hence the a-
bove estimate implies

log M+,(r)+log M(r)C{log M0(r)+log N0(r)}
for m=0, ..., k--1. Combining this estimate with Lemma 2, we obtain
log M0(r)+log No(r)C= log M(r)2Cr’-C. Lemma 3 is thus estab-
lished.

7. Proof of Lemma 4. We put F(x, y)=(f(x,y), g(x,y)). In view
of the form of the map F" .(x, y)’(y, ax+f(y)), let us provide a weight d
with the variable x and a weight 1 with the variable y. Then it is easy to
see that f(x, y) and g(x, y) are homogeneous of order d-’ and d with
respect to these weights, respectively. Hence we have the following esti-
mates"

(0) f(x, y) lco{1 +i xi,/ +1 xlF-’,
Ig(x, Y)ICo{l+lwlTM

Since ((t), (t)) is an unstable curve, we have (pt)=f@(t), (t)) and
g((t), v(t)). Hence (10) implies

(11) Mo(I p It) Co{1 + Mo(r)TM +No(r)}-’,
No(iplr)E Co{1 +Mo(r)’/ +No(r)}.

Put K(r)=log Mo(r)+log No(r). Then (11) implies
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K(Iplr)<_(d+d-1) log {1 +Mo(r)I/+ No(r)}+C
<_ (d + d- 0(log Mo(r)TM + log N0(r)}+ C2
<_(d-+d-)K(r)+(d--1)(d-’ +d-) log No(r)+C2
(d-+d-)K(r)+C,{log No(r)+ 1).

Let =d-+d-. Since d2, we have l.d. Summarizing these esti-
mates, we obtain
(12) K(pr)grK(r)+C{log N0(r) +1}, lrd.
Applying (12) repeatedly, we obtain

m--1

(13) K(pr)K(r)+C --{log No(pr)+l}

grK(r)+Cff’--l){log No(pr)+l}.
On the other hand, Lemma 1 and Lemma 3 imply K(r)gCr*+C and
K(lpl"r) C(p[r) Cs C(d)r Cs, respectively. Here we used the
equality [pl*= d which follows from the definition of . Substituting these
estimates into (13), we obtain
(14) C(7-1){log No(Iplr)+l}{C(dO-C7}r--(C+7C).
Since d>7 (see (12)), there exists an men such that C(d)-C>O.
Choose and fix such an m. Then we have log No( plr)Cor-Co. Replac-
ing by lpl-r, we obtain
(15) log No(r) C,,r*-C,.
So far we have made the argument with the unstable curve E0(t) and ob-
rained the estimate (15). If we make the same argument with the unstable
curve E_,(t) instead of E0(t), then we obtain an estimate for N_,(r) similar
to (15). Notice that (8) implies $0(t)=_,(t) and hence Mo(llr)=N_,(r).
Thus we obtain
(16) log Mo(r)C,r*-C,.
Estimates (15) and (16) establish Lemma 4.

As is noted in 3, Main Theorem is an easy consequence of Lemma 1
and Lemma 4.
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