53. On Solutions of the Poincaré Equation

By Katsunori Iwasaki
Department of Mathematics, Faculty of Science, University of Tokyo
(Communicated by Shokichi Iyanaga, m. J. A., June 11, 1991)

1. Introduction and result. Consider a map $F: C^{2} \rightarrow C^{2}$ defined by (1)

$$
F:{ }^{t}(x, y) \longmapsto{ }^{t}(y, a x+p(y)),
$$

where a is a nonzero constant and $p(y)$ is a polynomial of degree $d \geq 2$. The map F is called a twisted elementary map (Kimura [2]). We denote by F^{k} the k-times iteration of F. Assume that $z_{0}=^{t}\left(x_{0}, y_{0}\right) \in C^{2}$ is a periodic point of F of period k, i.e. a fixed point of F^{k}. Let J be the Jacobian matrix of F^{k} at z_{0}. Let ρ be an eigenvalue of $J, v={ }^{t}\left(v_{1}, v_{2}\right) \in \boldsymbol{C}^{2}$ an eigenvector of J corresponding to the eigenvalue ρ. The eigenvalue ρ is said to be unstable (resp. stable) if $|\rho|>1$ (resp. if $|\rho|<1$).

Definition (Kimura [2]). Suppose that ρ is unstable (resp. stable). A holomorphic map $E: C \rightarrow C^{2}$ is called an unstable (resp. a stable) curve through z_{0} if the following two conditions hold:

$$
\begin{align*}
\Xi(\rho t) & =F^{k}(\Xi(t)) & & \text { for } t \in C \tag{2}\\
\Xi(t) & =z_{0}+v t+O\left(t^{2}\right) & & \text { as } t \longrightarrow 0 . \tag{3}
\end{align*}
$$

If none of $\rho^{n}(n=2,3,4, \cdots)$ is an eigenvalue of J, it is known that there exists an unstable (a stable) curve through z_{0} ([2]). The functional equation (2) is called the Poincaré equation, since Poincaré [3] was the first to consider this type of functional equation (cf. Dixon-Esterle [1]). In this paper we shall establish the following :

Main theorem. Each component of the (un) stable curve $E(t)$ is an entire function of order τ and of finite type, where τ is given by

$$
\tau=\frac{\log d}{\left.|\log | \rho\right|^{1 / k} \mid}
$$

Remark. In a special case $k=1$, the result is already shown in [2]. As we shall see below, however, we require much subtler estimates than those in [2] to establish the theorem for $k>1$.
2. Notation. Throughout this paper we employ the following notation.
(a) Let $\boldsymbol{E}_{m}=^{t}\left(\xi_{m}, \eta_{m}\right): C \rightarrow \boldsymbol{C}^{2}$ be holomorphic maps defined recursively by $\Xi_{0}(t)=\boldsymbol{E}(t)$ and

$$
\begin{equation*}
\Xi_{m}(t)=F\left(\Xi_{m-1}\left(\lambda^{-1} t\right)\right) \quad \text { for } m \in \boldsymbol{Z}, \tag{4}
\end{equation*}
$$

where $\lambda=\rho^{1 / k}$. We put $\xi={ }^{t}\left(\xi_{0}, \cdots, \xi_{k-1}\right)$ and $\eta={ }^{t}\left(\eta_{0}, \cdots, \eta_{k-1}\right)$.
(b) For a k-vector $u={ }^{t}\left(u_{0}, \cdots, u_{k-1}\right) \in \boldsymbol{C}^{k}$, we put $\|u\|=\left|u_{0}\right|+\cdots+\left|u_{k-1}\right|$ and $p(u)={ }^{t}\left(p\left(u_{0}\right), \cdots, p\left(u_{k-1}\right)\right)$.
(c) We put for $r>0$,

$$
\begin{aligned}
M_{m}(r) & =\max _{||t|=r}\left|\xi_{m}(t)\right|+1, & N_{m}(r) & =\max _{|t|=r}\left|\eta_{m}(t)\right|+1, \\
M(r) & =\max _{|t|=r}\|\xi(t)\|, & N(r) & =\max _{|t|=r}\|\eta(t)\|,
\end{aligned}
$$

(d) We denote by C_{j} various positive constants depending only on $a, p(y)$ and k.
3. Lemmata. We shall give a proof of Main Theorem only in the unstable case $|\rho|>1$; we can treat the stable case in a similar manner. In order to establish Main Theorem, we shall show the following lemmata successively.

Lemma 1. $\quad \log M_{0}(r), \log N_{0}(r) \leq C_{0} r^{r}+C_{1}$.
Lemma 2. $\sum_{j=0}^{k-1} \log M_{j}(r) \geq C_{2} r^{r}-C_{3}$.
Lemma 3. $\log M_{0}(r)+\log N_{0}(r) \geq C_{4} r^{r}-C_{5}$.
Lemma 4. $\quad \log M_{0}(r), \log N_{0}(r) \geq C_{6} r^{r}-C_{7}$.
Main Theorem is an easy consequence of Lemma 1 and Lemma 4.
4. Proof of Lemma 1. Put $F^{k}(x, y)={ }^{t}(f(x, y), g(x, y))$. It is easy to see that $f(x, y)$ and $g(x, y)$ are polynomials of degree d^{k-1} and d^{k}, respectively. Hence we have $1+|f(x, y)|, 1+|g(x, y)| \leq C_{0}(2+|x|+|y|)^{d k}$. Since $\Xi(t)$ is an unstable curve, we have $\xi_{0}(\rho t)=f\left(\xi_{0}(t), \eta_{0}(t)\right)$ and $\eta_{0}(\rho t)=$ $g\left(\xi_{0}(t), \eta_{0}(t)\right.$). Substituting these into the above inequality, we obtain $M_{0}(|\rho| r), \quad N_{0}(|\rho| r) \leq C_{0}\left\{M_{0}(r)+N_{0}(r)\right\}^{d k}$. So, letting $S(r)=M_{0}(r)+N_{0}(r)$, we have

$$
S(|\rho| r) \leq \exp \left\{\left(d^{k}-1\right) C_{1}\right\} S(r)^{d^{k}}
$$

We see that $s(r)=\exp \left(C_{2} r^{r}-C_{1}\right)$ satisfies $s(|\rho| r)=\exp \left\{\left(d^{k}-1\right) C_{1}\right\} s(r)^{d^{k}}$. Assume that C_{2} is so large that $S(r) \leq s(r)$ for $1 \leq r \leq|\rho|$. Then it is easy to see that $S(r) \leq s(r)$ for $r \geq 1$. Hence we have $S(r) \leq \exp \left(C_{2} r^{r}+C_{3}\right)$ for $r \geq 0$. This shows that $\log M_{0}(r), \log N_{0}(r) \leq C_{2} r^{r}+C_{3}$, which establishes Lemma 1.
5. Proof of Lemma 2. By (4), $\Xi_{m}(t)$ is an unstable curve through $z_{m}=F^{m}\left(z_{0}\right)$. We see that $\Xi_{k}(t)=\Xi_{0}(t)$. Hence it follows from (4) that $\xi(\lambda t)$ $=A \eta(t)$ and $\eta(\lambda t)=a A \xi(t)+p(A \eta(t))$, where $A=\left(a_{i j}\right)$ is a $k \times k$ permutation matrix defined by $a_{i j}=1$ if $i-j \equiv 1(\bmod k), a_{i j}=0$ otherwise. Eliminating η, we obtain

$$
\begin{equation*}
A^{-1} \xi(\lambda t)=p(\xi(t))+a A \xi\left(\lambda^{-1} t\right) \tag{5}
\end{equation*}
$$

Since $p(y)$ is a polynomial of degree d, we have $|p(y)| \geq C_{0}|y|^{d}-C_{1}$. Applying this estimate to (5), we obtain
(6) $\quad\|\xi(\lambda t)\| \geq C_{0}\|\xi(t)\|^{d}-\left\|\xi\left(\lambda^{-1} t\right)\right\|-C_{2}$.
Since $\xi_{j}(t)(j=0,1, \cdots, k-1)$ are entire functions not identically zero, $\|\xi(t)\|$ is a subharmonic function. Hence $M(r)$ is monotonically increasing in r and tends to $+\infty$ as $r \rightarrow \infty$. Thus (6) implies that $M(|\lambda| r) \geq C_{0} M(r)^{d}-$ $C_{1} M(r)-C_{2}$. If r is sufficiently large, then so is $M(r)$. Thus we may assume that

$$
M(|\lambda| r) \geq \exp \left\{(d-1) C_{3}\right\} M(r)^{d}, \quad M(r) \geq 2 \quad \text { for } r \geq r_{0}
$$

We see that $m(r)=\exp \left(C_{4} r^{r}-C_{3}\right)$ satisfies $m(|\lambda| r)=\exp \left\{(d-1) C_{3}\right\} m(r)^{d}$. Assume that C_{4} is so small that $M(r) \geq m(r)$ for $r_{0} \leq r \leq|\lambda| r_{0}$. We can easily
show that $M(r) \geq m(r)$ for $r \geq r_{0}$. Hence we have
(7)

$$
\log M(r) \geq C_{4} r^{r}-C_{1} .
$$

By the definition of $M(r)$ and $M_{j}(r)$, it is evident that $M(r) \leq \sum_{k=0}^{k-1} M_{j}(r)$. On the other hand, the following inequality holds for $x_{j} \geq 1$,

$$
\sum_{j=0}^{k-1} \log x_{j} \geq \log \left(\sum_{j=0}^{k-1} x_{j}\right)-k .
$$

Combining these inequalities with (7), we obtain $\sum_{j=0}^{k-1} \log M_{j}(r) \geq C_{4} r r^{r}-C_{3}$. Lemma 2 is thus established.
6. Proof of Lemma 3. We rewrite (4) as
(8) $\quad \xi_{m}(\lambda t)=\eta_{m-1}(t), \quad \eta_{m}(\lambda t)=p\left(\eta_{m-1}(t)\right)+a \xi_{m-1}(t)$.

Eliminating η, we obtain $\xi_{m+1}(\lambda t)=p\left(\xi_{m}(t)\right)+a \xi_{m-1}\left(\lambda^{-1} t\right)$. If we put $\theta_{m}(t)=$ $\xi_{m}\left(\lambda^{m} t\right)$, then we have $\theta_{m+1}=p\left(\theta_{m}\right)+a \theta_{m-1}$. It follows that $\left|\theta_{m+1}\right| \leq C_{0}\left|\theta_{m}\right|^{d}+$ $C_{1}\left|\theta_{m-1}\right|+C_{2}$. More loosely, we have
(9) $\quad C_{3}+\left|\theta_{m+1}\right| \leq\left(C_{3}+\left|\theta_{m}\right|\right)^{d}\left(C_{3}+\left|\theta_{m-1}\right|\right)^{d}$.

Let us put $L_{m}(r)=\max _{|t|=r}\left|\theta_{m}(t)\right|$ and $u_{m}(r)=\log \left(C_{3}+L_{m}(r)\right)$. Note that $u_{m}(r)$ is monotonically increasing in r and tends to $+\infty$ as $r \rightarrow \infty$. It follows from (9) that $u_{m+1} \leq d\left(u_{m}+u_{m-1}\right)$. Let $-\alpha$ and β be the roots of the quadratic equation $X^{2}-d X-d=0$ such that $0<\alpha<1$ and $\beta>d$. Then we have $u_{m+1}+\alpha u_{m} \leq \beta\left(u_{m}+u_{m-1}\right)$. Since $0<\alpha<1$ and $M_{m}(r)$ is monotonically increasing, this estimate implies

$$
\begin{aligned}
& \alpha\left\{\log M_{m+1}(r)+\log M_{m}(r)\right\} \\
& \quad \leq \log \left\{C_{3}+M_{m+1}\left(|\lambda|^{n+1} r\right)\right\}+\alpha \log \left\{C_{3}+M_{m}\left(|\lambda|^{m} r\right)\right\} \\
& \quad=u_{m+1}(r)+\alpha u_{m}(r) \\
& \quad \leq \beta^{m}\left\{u_{1}(r)+\alpha u_{0}(r)\right\} \\
& \quad \leq \beta^{m}\left\{\log \left(C_{3}+M_{1}(|\lambda| r)\right)+\log \left(C_{3}+M_{0}(r)\right)\right\}
\end{aligned}
$$

Note that (8) implies $\eta_{0}(t)=\xi_{1}(\lambda t)$ and hence $N_{0}(r)=M_{1}(|\lambda| r)$. Hence the above estimate implies

$$
\log M_{m+1}(r)+\log M_{m}(r) \leq C_{4}\left\{\log M_{0}(r)+\log N_{0}(r)\right\}
$$

for $m=0, \cdots, k-1$. Combining this estimate with Lemma 2, we obtain $\log M_{0}(r)+\log N_{0}(r) \geq C_{5} \sum_{j=0}^{k-1} \log M_{j}(r) \geq C_{6} r^{\tau}-C_{7} . \quad$ Lemma 3 is thus established.
7. Proof of Lemma 4. We put $F^{k}(x, y)=^{t}(f(x, y), g(x, y))$. In view of the form of the map $F:{ }^{t}(x, y) \mapsto^{t}(y, a x+f(y))$, let us provide a weight d with the variable x and a weight 1 with the variable y. Then it is easy to see that $f(x, y)$ and $g(x, y)$ are homogeneous of order d^{k-1} and d^{k} with respect to these weights, respectively. Hence we have the following estimates:

$$
\begin{align*}
& |f(x, y)| \leq C_{0}\left\{1+|x|^{1 / d}+|x|\right\}^{d^{k-1}}, \tag{10}\\
& |g(x, y)| \leq C_{0}\left\{1+|x|^{1 / d}+|y|\right\}^{d k} .
\end{align*}
$$

Since $(\xi(t), \eta(t))$ is an unstable curve, we have $\xi(\rho t)=f(\xi(t), \eta(t))$ and $\eta(\rho t)=$ $g(\xi(t), \eta(t))$. Hence (10) implies

$$
\begin{align*}
& M_{0}(|\rho| r) \leq C_{0}\left\{1+M_{0}(r)^{1 / d}+N_{0}(r)\right\}^{d^{k-1}}, \\
& N_{0}(|\rho| r) \leq C_{0}\left\{1+M_{0}(r)^{1 / d}+N_{0}(r)\right\}^{d^{k}} . \tag{11}
\end{align*}
$$

Put $K(r)=\log M_{0}(r)+\log N_{0}(r)$. Then (11) implies

$$
\begin{aligned}
K(|\rho| r) & \leq\left(d^{k}+d^{k-1}\right) \log \left\{1+M_{0}(r)^{1 / k}+N_{0}(r)\right\}+C_{1} \\
& \leq\left(d^{k}+d^{k-1}\right)\left\{\log M_{0}(r)^{1 / d}+\log N_{0}(r)\right\}+C_{2} \\
& \leq\left(d^{k-1}+d^{k-2}\right) K(r)+(d-1)\left(d^{k-1}+d^{k-2}\right) \log N_{0}(r)+C_{2} \\
& \leq\left(d^{k-1}+d^{k-2}\right) K(r)+C_{3}\left\{\log N_{0}(r)+1\right\} .
\end{aligned}
$$

Let $\gamma=d^{k-1}+d^{k-2}$. Since $d \geq 2$, we have $1<\gamma<d^{k}$. Summarizing these estimates, we obtain
(12)

$$
K(|\rho| r) \leq \gamma K(r)+C_{3}\left\{\log N_{0}(r)+1\right\}, \quad 1<\gamma<d^{k} .
$$

Applying (12) repeatedly, we obtain

$$
\begin{equation*}
K\left(|\rho|^{m} r\right) \leq \gamma^{m} K(r)+C_{3} \sum_{n=0}^{m-1} \gamma^{m-n-1}\left\{\log N_{0}\left(|\rho|^{n} r\right)+1\right\} \tag{13}
\end{equation*}
$$

$$
\leq \gamma^{m} K(r)+C_{4}\left(\gamma^{m}-1\right)\left\{\log N_{0}\left(|\rho|^{m} r\right)+1\right\}
$$

On the other hand, Lemma 1 and Lemma 3 imply $K(r) \leq C_{5} r^{r}+C_{6}$ and $K\left(|\rho|^{n} r\right) \geq C_{7}\left(|\rho|^{m} r\right)^{r}-C_{8}=C_{7}\left(d^{k}\right)^{m} r^{r}-C_{8}$, respectively. Here we used the equality $|\rho|^{r}=d^{k}$ which follows from the definition of τ. Substituting these estimates into (13), we obtain
(14) $\quad C_{4}\left(\gamma^{m}-1\right)\left\{\log N_{0}\left(|\rho|^{m} r\right)+1\right\} \geq\left\{C_{7}\left(d^{k}\right)^{m}-C_{5} \gamma^{m}\right\} r^{r}-\left(C_{8}+\gamma^{m} C_{6}\right)$.

Since $d^{k}>\gamma$ (see (12)), there exists an $m \in N$ such that $C_{7}\left(d^{k}\right)^{m}-C_{5} r^{m}>0$. Choose and fix such an m. Then we have $\log N_{0}\left(|\rho|^{n} r\right) \geq C_{9} r^{r}-C_{10}$. Replacing γ by $|\rho|^{-m} r$, we obtain
(15)

$$
\log N_{0}(r) \geq C_{11} r^{r}-C_{12}
$$

So far we have made the argument with the unstable curve $\Xi_{0}(t)$ and obtained the estimate (15). If we make the same argument with the unstable curve $\Xi_{-1}(t)$ instead of $\Xi_{0}(t)$, then we obtain an estimate for $N_{-1}(r)$ similar to (15). Notice that (8) implies $\xi_{0}(\lambda t)=\eta_{-1}(t)$ and hence $M_{0}(|\lambda| r)=N_{-1}(r)$. Thus we obtain

$$
\begin{equation*}
\log M_{0}(r) \geq C_{13} r^{\tau}-C_{14} \tag{16}
\end{equation*}
$$

Estimates (15) and (16) establish Lemma 4.
As is noted in $\S 3$, Main Theorem is an easy consequence of Lemma 1 and Lemma 4.

References

[1] P. G. Dixon and J. Esterle: Michel's problem and the Poincaé-Fatou-Bieberbach phenomenon. Bull. Amer. Math. Soc. (New Series), 15, 127-187 (1986).
[2] T. Kimura: On Fatou-Bieberbach domains in C^{2}. J. Fac. Sci. Univ. Tokyo, Sect IA, 35, 103-148 (1988).
[3] H. Poincaré: Sur une classe nouvelle de transcendantes uniformes. J. de Liouville, 4^{e} série 6, 313-365 (1890).

