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41. On Non.stationary Boussinesq Equations

By Hiroko MORIMOTO
Department of Mathematics, School o.f Science and Technology, Meiji University

(Communicated by Kunihiko KODAIRA, M. J, A., May 13, 1991)

Let /2 be a bounded domain in R’(2_n_4), the boundary of which
satisfies the next condition.

Condition (H). 3[2 is of class C and divided as follows"
F f F=, measure of F:/:O, and the intersection fl is an n--2 dimen-
sional C manifold.

We consider the following initial boundary value problem"

+(.=-,++o,
1 ) tdiv u=0, x e t0,-+(u )o zo,

u(x, t)=0, 0(x, t)=(x, t), x e/"1, t>0,
( 2 )

[u(x, t)=0, -- 0(x, t)=(x, t), x e F2,

(u(x, 0) a0(x),( 3 )
ItS(x, 0) =r0(x),

x e 9,

where u=(u, u,..., u) is the fluid velocity, p is the pressure, 0 is the
temperature, u./7

__
u(3/3x), (30/3n) denotes the outer normal derivative

of t at x to 39, g(x, t) is the gravitational vector unction, and p(density),
,(kinematic viscosity), fl(coefficient of volume expansion), Z(thermal diffu-
sivity) are positive constants. (x, t) (resp. (x, t)) is a tuaction defined

F: (0, T) (resp. F (0, T)) and ao(X) (resp. r0(x)) is a vector (resp. scalar)
unction defined on 9. This system of equations (1) describes the motion
of fluid of heat convection (Boussinesq approximation).

In our previous papers [7, 8], we showed the existeace of weak solution
of the stationary problem. In this paper, we report the existence of a
weak solution of evolutional problem (1), (2), (3) (Theorem 1), its unique-
ness and some regularity property (Theorems 2, 3), and the existence of
solutions with reproductive property (Theorem 4).

Firstly we define some function spaces. The functions considered in
this paper are all real valued. L(tg) and the Sobolev space W(tg)are de-
fined as usual. We also denote H(2)= W(tg). Whether the elements of
space are scalar or vector functions is understood from the contexts unless
stated explicitly.

The solenoidal unction spaces are as follows"
D={vector unction e C(2) supp c9, div=0 in
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H=completion of D under the L())-norm,
V=completion of D, under the H(/2)-norm.

It is well known that V=H(D) H, where H0(9) is the completion of
C(2) under the H(12) norm ([9]). The following function spaces are also
important"

D0={scalar function e C(9) i=_0 in a neighborhood of F},
W-completion of Do under the H(tg)-norm.

Assume {u, p, 0} be a classical solution of (1), (2), (3). Let us take the
L inner product of v e D and the first equation of (1) (resp. r e Do and the
third equation of (1)). Then, using the integration by parts, we obtain"

I-(u, v)+((u.iT)u, v)----(iTu, ITv)-l-(g, v),
(4)

where

(r], r)r,= ri(x’)r(x’)da.
F

Definition 1. A pair of functions {u, 0} is called a weak solution of
(1), (2) if u e L(0, T V), t-Oo e L(0, T W), for some function t0(x, t) in
L(0, T H’(t2)) such that t0(x, t)= (x, t), x e F,, t e (0, T), and {u, 0} satisfy

(4) for any v e V, r e W, where the derivative with respect to t is in the
distribution sense _q)’(0, T).

If we suppose merely u e L(0, T" V) and 0-00 e L(0, T" W), the con-
dition (3) doesn’t necessarily make sense but according to the following

lemma, the condition (3) makes sense.
Lemma 1. Suppose

g e L(9 >< (0, T)), o e L(O, T H(D)), e L(F >< (0, T))
u e L(0, T V), --0 e L(0, T W)

and (u, O} satisfy (4) for any v e V, r e W. Then u (resp. O) is equal to an
absolutely continuous function from [0, T] into V’ (resp. W’), where V’ (resp.
W’) is the dual space of V (resp. W).

Our results are the following theorems.
Theorem 1. Let n be an integer 2<_n<_4, and 2 a bounded domain in

R with C boundary satisfying Condition (H). If g(x, t) is in L(2 >< (0, T)),
e C(/ >< [0, T]), ] e L(FX (0, T)), ao e H, r0 e L(9), then there exists a

weak solution {u, t} of (1), (2) satisfying the initial condition (3). Further-
more

u e L(O, T H), e L(O, T L(D)).
Theorem 2. Let n--2. The weak solution {u, } of (1), (2) satisfying

the initial condition (3) is unique. Moreover, u (resp. ) is almost every-
where equal to a function continuous from [0, T] to H (resp. L(t)).

Theorem 3. Let n>_3. The weak solution {u, } of (1), (2) satisfying
the initial condition (3) is unique if

u e L(0, T V) g] L(0, T H)
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0 e L2(0, T HI())1L(0, T L(2))
and

u e Ls(O, T Lr(2)) and
hold for some r>n, s 2r /(r- n).

The proof is based on the construction of approximate solutions by the
Galerkin method and a passage to the limit using an a priori estimate on
the fractional derivative in time of the approximate solutions and a com-
pactness theorem (cf. J. Leray [3, 4], E. Hopf [1], J.L. Lions [5, 6], R.
Temam [9]).

Let {u, 0} be a weak solution of (1), (2). If they satisfy the following
condition"
(5) u(x, 0)--u(x, T), O(x, 0)--O(x, T),
then we say they have reproductive property (Kaniel-Shinbrot [2]).

Theorem 4. Let 2n_4, and be a bounded domain in R with C
boundary satisfying Condition (H). Let g(x, t) be in L(2(O, T)), e
C’(/ [0, T]) and ] e L2(F2 (0, T)). Set g=l]g I,((o,r)). If flg//- is
sufficiently small, then there exists a weak solution o.f (1), (2) having repro-
ductive property (5). Furthermore

u e L(O, T H), 0 e L(O; T L([2)).
Using Galerkin’s method and Brouwer’s theorem, we show the exist-

ence of approximate solutions with reproductive property. Its convergence
to the weak solution with reproductive property is derived in a similar way
to the evolutional case. Full details of the proof will appear elsewhere.
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