33. On a Remarkable Class of Homogeneous Symplectic Manifolds

By Soji KANEYUKI Department of Mathematics, Sophia University (Communicated by Kunihiko KODAIRA, M. J. A., April 12, 1991)

In this note, we present some results^{*)} on homogeneous symplectic manifolds M admitting a pair of transversal Lagrangian foliations (The class of these manifolds contains parahermitian symmetric spaces introduced and studied in [1], [2]). To such a manifold M we associate an algebraic object, called a (weak) dipolarization in a Lie algebra. We construct a natural compactification of such a manifold M arising from a semisimple graded Lie algebra. Also we give the infinitesimal classification of such manifolds corresponding to simple graded Lie algebras. The details will appear elsewhere.

1. Let M be a (connected) symplectic manifold with symplectic form ω , and let (F^*, F^-) be a pair of transversal completely integrable distributions on M. Then the triple (M, ω, F^{\pm}) (or simply M) is said to be a parakähler manifold if each leaf of F^{\pm} is a Lagrangian submanifold of M. A parakähler manifold is originally introduced by P. Libermann [4] by a different point of view (see also [1]). Let (M, ω, F^{\pm}) be a parakähler manifold. By an *automorphism* of M we mean a symplectomorphism of M which leaves the distributions F^{\pm} invariant. We denote by Aut M the full group of automorphisms of M, which turns out to be a finite-dimensional Lie group. If Aut M acts transitively on M, then M is called a homogeneous parakähler manifold. Let G be a connected Lie group and H be a closed subgroup of If the coset space G/H admits a parakähler structure (ω, F^{\pm}) and if G *G*. acts on G/H as automorphisms, then we say that the parakähler structure (ω, F^{\pm}) is *G*-invariant and that G/H is a parakähler coset space. A homogeneous parakähler manifold may be expressed as various parakähler coset spaces. In our situation we can consider a "parakähler algebra" which is an analogue to a Kähler algebra (Vinberg-Gindikin [5]) for a homogeneous Kähler manifold.

Definition 1. Let g be a real Lie algebra, g^{\pm} be two subalgebras of g and ρ be an alternating 2-form on g. The triple $\{g^+, g^-, \rho\}$ is called a *weak dipolarization* in g, if the following conditions are satisfied:

WD1) $g = g^+ + g^-$,

WD2) Put $\mathfrak{h} := \mathfrak{g}^+ \cap \mathfrak{g}^-$. Then $\rho(X, \mathfrak{g}) = 0$ if and only if $X \in \mathfrak{h}$,

WD3) $\rho(\mathfrak{g}^+,\mathfrak{g}^+)=\rho(\mathfrak{g}^-,\mathfrak{g}^-)=0,$

^{*)} The results here were presented on April 1990 at the annual meeting of the Mathematical Society of Japan.

No. 4]

WD4) $\rho([X, Y], Z) + \rho([Y, Z], X) + \rho([Z, X], Y) = 0, \quad X, Y, Z \in g.$

Definition 2. Let g be a real Lie algebra and g^{\pm} be two subalgebras of g, and let f be a linear form on g. The triple $\{g^+, g^-, f\}$ is called a *dipolariza*tion in g, if the followings are valid:

D1) $g = g^+ + g^-,$

D2) Put $\mathfrak{h} := \mathfrak{g}^+ \cap \mathfrak{g}^-$. Then $f([X, \mathfrak{g}]) = 0$ if and only if $X \in \mathfrak{h}$.

D3) $f([\mathfrak{g}^+, \mathfrak{g}^+]) = f([\mathfrak{g}^-, \mathfrak{g}^-]) = 0.$

Note that a dipolarization $\{g^+, g^-, f\}$ becomes a weak dipolarization just by taking df as ρ , where d denotes the coboundary operator in the sense of Lie algebra cohomology. By making use of a parakähler algebra as an intermediate, we can establish the following relationship between invariant parakähler structures on a coset space G/H and weak dipolarizations in the Lie algebra Lie G.

Theorem 1. Let G be a connected Lie group and H be a closed subgroup of G. Let g=Lie G and $\mathfrak{h}=$ Lie H. If the coset space G/H has an invariant parakähler structure, then g admits a weak dipolarization $\{g^+, g^-, \rho\}$ satisfying

(1) $\mathfrak{h}=\mathfrak{g}^+\cap\mathfrak{g}^-$. Conversely, suppose that there exists a weak dipolarization $\{\mathfrak{g}^+,\mathfrak{g}^-,\rho\}$ in g satisfying (1) and the following two conditions

(2) $(\operatorname{Ad}_{\mathfrak{g}} H)\mathfrak{g}^{\pm} \subset \mathfrak{g}^{\pm},$

(3) ρ is Ad_a *H*-invariant.

Then G/H has an invariant parakähler structure.

Remark. In the above theorem, the conditions (2) and (3) are superfluous, provided that H is connected.

2. Let g be a real semisimple Lie algebra and B be the Killing form of g. In this case, a weak dipolarization in g is always a dipolarization, since the second cohomology group of g vanishes. Later on we will be concerned with dipolarizations associated with gradations in g. Now let $g = \sum_{k=-\nu}^{\nu} g_k$ be a semisimple GLA of the ν -th kind (GLA is the abbreviation of "graded Lie algebra"), and let $Z \in g$ be its characteristic element, i.e., Z is a unique element of g satisfying the condition $g_k = \{X \in g : [Z, X] = kX\}, -\nu \leq k \leq \nu$.

Proposition 2. Under the above situation, let $g^{\pm} = \sum_{k=0}^{\nu} g_{\pm k}$, and let f be the linear form on g defined by f(X) = B(Z, X), $X \in g$. Then $\{g^{+}, g^{-}, f\}$ is a dipolarization in g.

From Theorem 1 and Proposition 2, we have

Theorem 3. Let $g = \sum_{k=-\nu}^{\nu} g_k$ be a semisimple GLA of the ν -th kind with characteristic element Z. Let G be a connected Lie group with Lie G = g, and C(Z) be the centralizer of Z in G. Then the coset space G/C(Z) has an invariant parakähler structure.

The above coset space G/C(Z) is called a *semisimple* or *simple* parakähler coset space (of the ν -th kind), according as G is semisimple or simple

respectively.

Remark. A semisimple parakähler coset space of the ν -th kind is a parahermitian symmetric space if and only if $\nu = 1$ ([1]).

Let G/C(Z) be a semisimple parakähler coset space corresponding to a semisimple GLA $g = \sum_{k=-\nu}^{\nu} g_k$. Let $\mathfrak{m}^{\pm} = \sum_{k=1}^{\nu} g_{\pm k}$, and consider the parabolic subgroups $U^{\pm} = C(Z) \exp \mathfrak{m}^{\pm}$ of G and the R-spaces $M^{\pm} = G/U^{\pm}$. If G is complex semisimple, then G/U^{\pm} are Kähler C-spaces in the sense of H.C. Wang. The following two theorems are generalizations of the corresponding results for parahermitian symmetric spaces [2].

Theorem 4. A semisimple parakähler coset space G/C(Z) is diffeomorphic to the cotangent bundle of the R-space G/U^+ . If G is complex semisimple, then G/C(Z) is holomorphically equivalent to the cotangent bundle of the Kähler C-space G/U^+ .

The group G acts on the compact product manifold $G/U^- \times G/U^+$ diagonally, that is, $g(p^-, p^+) = (gp^-, gp^+)$, where $g \in G$ and $p^{\pm} \in G/U^{\pm}$. Let o^{\pm} denote the origins of G/U^{\pm} respectively.

Theorem 5. A semisimple parakähler coset space G/C(Z) is equivariantly imbedded in $G/U^- \times G/U^+$ as the G-orbit through the point (o^-, o^+) under the diagonal G-action. The image of G/C(Z) is open and dense in $G/U^- \times G/U^+$. In particular the compact manifold $G/U^- \times G/U^+$ is viewed as a G-equivariant compactification of G/C(Z). If G is complex semisimple, then the above imbedding is holomorphic.

3. In this paragraph we list up all the infinitesimal pairs $(\mathfrak{g}, \mathfrak{g}_0) =$ (Lie *G*, Lie *C*(*Z*)) corresponding to simple parakähler coset spaces *G*/*C*(*Z*) of the second kind, which amounts to the infinitesimal classification of such spaces. This is obtained by using the results of [3] on simple GLA's.

 $(\mathfrak{sl}(n, F), \mathfrak{sl}(p, F) + \mathfrak{sl}(q, F) + \mathfrak{sl}(n - p - q, F) + F + F),$ $F = R \text{ or } C, 1 \le p \le [n/2],$ $1 \le q \le n - 2p, n \ge 3$, $(\mathfrak{sl}(n, H), \mathfrak{sl}(p, H) + \mathfrak{sl}(q, H) + \mathfrak{sl}(n - p - q, H) + R + R),$ $1 \le p \le [n/2],$ 1 < q < n-2p, n > 3, $(\mathfrak{su}(p,q),\mathfrak{sl}(k, \mathbf{C}) + \mathfrak{su}(p-k, q-k) + \mathbf{R} + i\mathbf{R}),$ $1 \le k \le p$ if $1 \le p \le q$, or $1 \le k \le p - 1$ if $3 \le p = q$, $(\mathfrak{so}(p,q),\mathfrak{sl}(k,\mathbf{R})+\mathfrak{so}(p-k,q-k)+\mathbf{R}),$ 2 < k < p if 2 , or $2 \leq k \leq p-1$ if $4 \leq p=q$, $(\mathfrak{gp}(n, F), \mathfrak{sl}(k, F) + \mathfrak{sp}(n-k, F) + F), F = R \text{ or } C, 1 \leq k \leq n-1, n \geq 3,$ $(\mathfrak{Sp}(p,q),\mathfrak{Sl}(k,H)+\mathfrak{Sp}(p-k,q-k)+R),$ $1 \le k \le p$ if $1 \le p \le q$, or $1 \leq k \leq p-1$ if $2 \leq p=q$, $(\mathfrak{so}^{*}(2n),\mathfrak{sl}(k,H)+\mathfrak{so}^{*}(2n-4k)+R), \quad 1 < k < (n/2)-1 \text{ for } n \text{ even} > 6, \text{ or } n \in \mathbb{N}$ $1 \leq k \leq (n-1)/2$ for $n \text{ odd} \geq 5$, $(\mathfrak{so}(n, \mathbf{C}), \mathfrak{sl}(k, \mathbf{C}) + \mathfrak{so}(n-2k, \mathbf{C}) + \mathbf{C}), 2 \leq k \leq [n/2] \text{ for } n \text{ odd} \geq 3, \text{ or } k \leq n/2$ $2 \leq k \leq (n/2) - 2$ for $n \text{ even} \geq 8$,

 $(\mathfrak{so}(n, n), \mathfrak{sl}(n-1, R) + R + R),$ $(\mathfrak{so}(2n, C), \mathfrak{sl}(n-1, C) + C + C),$ $(E_{6(6)}, \mathfrak{Sl}(5, \mathbf{R}) + \mathfrak{Sl}(2, \mathbf{R}) + \mathbf{R})$ $(E_{6(6)}, \mathfrak{So}(4, 4) + \mathbf{R})$ $(E_{6(2)}, \mathfrak{So}(3, 5) + \mathbf{R} + i\mathbf{R})$ $(E_{6(-14)}, \mathfrak{so}(1,7) + R + iR)$ $(E_{7(7)}, \mathfrak{so}(5, 5) + \mathfrak{sl}(2, R) + R)$ $(E_{7(7)}, \mathfrak{Sl}(7, \mathbf{R}) + \mathbf{R})$ $(E_{7(-5)}, \mathfrak{So}(3,7) + \mathfrak{Su}(2) + \mathbf{R})$ $(E_{7(-25)}, \mathfrak{so}(1, 9) + \mathfrak{sl}(2, R) + R)$ $(E_{8(8)}, \mathfrak{so}(7,7) + \mathbf{R})$ $(E_{8(-24)}, \mathfrak{so}(3, 11) + R)$ $(F_{4(4)}, \mathfrak{so}(3, 4) + R)$ $(G_{2(2)}, \mathfrak{Sl}(2, \mathbf{R}) + \mathbf{R})$ $(E_6^C, \mathfrak{sl}(6, C) + C)$ $(E_7^c, \mathfrak{so}(10, C) + \mathfrak{sl}(2, C) + C)$ $(E_7^c, \mathfrak{sl}(7, C) + C)$ $(E_{8}^{c}, \mathfrak{so}(14, C) + C)$ $(F_4^c, \mathfrak{so}(7, C) + C)$

$n \ge 4$, $n \ge 4$, $(E_{6(6)}, \mathfrak{Sl}(6, \mathbf{R}) + \mathbf{R})$ $(E_{6(2)}, \mathfrak{Su}(3, 3) + \mathbf{R})$ $(E_{6(-14)}, \mathfrak{Su}(1, 5) + \mathbf{R})$ $(E_{6(-26)}, \mathfrak{So}(8) + \mathbf{R} + \mathbf{R})$ $(E_{7(7)}, \mathfrak{so}(6, 6) + \mathbf{R})$ $(E_{7(-5)}, \mathfrak{so}^*(12) + \mathbf{R})$ $(E_{7(-25)}, \mathfrak{so}(2, 10) + R)$ $(E_{8(8)}, E_{7(7)} + \mathbf{R})$ $(E_{8(-24)}, E_{7(-25)} + R)$ $(F_{4(4)}, \mathfrak{Sp}(3, \mathbf{R}) + \mathbf{R})$ $(F_{4(-20)}, \mathfrak{SO}(7) + \mathbf{R})$ $(E_6^C, \mathfrak{Sl}(5, C) + \mathfrak{Sl}(2, C) + C)$ $(E_6^C, \mathfrak{so}(8, C) + C)$ $(E_7^c, \mathfrak{so}(12, C) + C)$ $(E_{8}^{c}, E_{7}^{c} + C)$ $(F_4^C, \mathfrak{Sp}(3, C) + C)$ $(G_2^c, \mathfrak{gl}(2, C) + C)$

References

- S. Kaneyuki and M. Kozai: Paracomplex structures and affine symmetric spaces. Tokyo J. Math., 8, 81–98 (1985).
- [2] S. Kaneyuki: On orbit structure of compactifications of parahermitian symmetric spaces. Japan. J. Math., 13, 333-370 (1987).
- [3] S. Kaneyuki and H. Asano: Graded Lie algebras and generalized Jordan triple systems. Nagoya Math. J., 112, 81-115 (1988).
- [4] P. Libermann: Sur le probleme d'equivalence de certaines structures infinitesimales. Ann. Mat. Pura Appl., 36, 27-120 (1954).
- [5] E. B. Vinberg and S. G. Gindikin: Kähler manifolds admitting a transitive solvable automorphism group. Mat. Sb., 74, 333-351 (1967).
- [6] S. Kaneyuki: Homogeneous symplectic manifolds and dipolarizations in Lie algebras (1990) (preprint).