27. On the Gaps between the Consecutive Zeros of the Riemann Zeta Function

By Akio FuJiI
Department of Mathematics, Rikkyo University
(Communicated by Shokichi IyANAgA, M. J. A., April 12, 1990)

§ 1. Introduction. Let γ_{n} be the n-th positive imaginary part of the zeros of the Riemann zeta function $\zeta(s)$. We have shown in [1] and [2] that for each integer $k \geq 1$ and for $T>T_{0}$,

$$
C_{1} \frac{T \log T}{\log ^{k} T} \leq \sum_{T \leq r_{n} \leq 2 T}\left(\gamma_{n+1}-\gamma_{n}\right)^{k} \leq C_{2} \frac{T \log T}{\log ^{k} T}
$$

where C_{1} and C_{2} are some positive constants. The implicit constant C_{2} might be large. The purpose of the present article is to get an explicit C_{2} (for the case $k=2$) under the assumption of the Riemann Hypothesis. We shall prove the following theorem.

Theorem 1. For $T>T_{0}$, we have

$$
\sum_{r_{n} \leq T}\left(\gamma_{n+1}-\gamma_{n}\right)^{2} \leq 9 \cdot \frac{2 \pi T}{\log \frac{T}{2 \pi}}
$$

We shall prove this theorem as an application of the following mean value theorem which has been proved in [5]. We put

$$
S(t)=\frac{1}{\pi} \arg \zeta\left(\frac{1}{2}+i t\right)
$$

and

$$
F(a)=F(a, T)=\left(\frac{T}{2 \pi} \log \frac{T}{2 \pi}\right)^{-1} \sum_{0<r, r^{\prime} \leq T}\left(\frac{T}{2 \pi}\right)^{i a\left(\gamma-r^{\prime}\right)} \frac{4}{4+\left(\gamma-\gamma^{\prime}\right)^{2}},
$$

where γ and γ^{\prime} run over the imaginary parts $(\neq 0)$ of the zeros of $\zeta(s)$.
Theorem 2. Suppose that $0<\Delta=o(1)$. Then we have for $T>T_{0}$,

$$
\begin{aligned}
& \int_{0}^{T}(S(t+\Delta)-S(t))^{2} d t \\
& \quad=\frac{T}{\pi^{2}}\left\{\int_{0}^{\Delta \log (T / 2 \pi)} \frac{1-\cos (a)}{a} d a+\int_{1}^{\infty} \frac{F(a)}{a^{2}}\left(1-\cos \left(a \Delta \log \frac{T}{2 \pi}\right)\right) d a\right\}+o(T)
\end{aligned}
$$

In fact, we shall use it in the following form.
Corollary. Suppose that $T>T_{0}$ and $1 / \log (T / 2 \pi) \leq \Delta=o(1)$. Then we have with $|\theta| \leq 1$ and the Euler constant C_{0},

$$
\begin{aligned}
& \int_{0}^{T}(S(t+\Delta)-S(t))^{2} d t=\frac{T}{\pi^{2}} \log \left(\Delta \log \frac{T}{2 \pi}\right) \\
& \quad+\frac{T}{\pi^{2}}\left(C_{0}-\frac{\sin (\Delta \log (T / 2 \pi))}{\Delta \log \frac{T}{2 \pi}}+2 \theta\left(\frac{1}{\left(\Delta \log \frac{T}{2 \pi}\right)^{2}}+2\right)+o(1)\right)
\end{aligned}
$$

To get corollary from Theorem 2, we notice that

$$
\int_{0}^{\Delta \log (T / 2 \pi)} \frac{1-\cos (a)}{a} d a=\log \left(\Delta \log \frac{T}{2 \pi}\right)+C_{0}-C i\left(\Delta \log \frac{T}{2 \pi}\right)
$$

and that by Theorem 2 of Goldston [6],

$$
\left|\int_{1}^{\infty} \frac{F(a)}{a^{2}}\left(1-\cos \left(a \Delta \log \frac{T}{2 \pi}\right)\right) d a\right| \leq 2 \int_{1}^{\infty} \frac{F(a)}{a^{2}} d a<4
$$

To prove Theorem 2, we have applied Goldston's work [6] and also used the following lemma.

Lemma. Suppose that $a \ll T^{A}$ with some positive constant A. Then we have

$$
W \equiv \sum_{0<r \leq T, r+a>0} S(\gamma+a) \ll T \log T
$$

We shall give its proof below, using Selberg's explicit formula for $S(t)$ and the author's recent results [3] on the distribution of the zeros of $\zeta(s)$.
§2. Proof of Theorem 1. Suppose that

$$
\frac{3}{2 \log \frac{T}{2 \pi}} \leq H=O\left(\frac{1}{\log \log T}\right)
$$

Then using the first formula in the introduction, we get

$$
\begin{aligned}
& M \equiv \sum_{\gamma_{n} \leq T}\left(\gamma_{n+1}-\gamma_{n}\right)^{2} \leq \sum_{\substack{\begin{subarray}{c}{\text { /log} 2 \\
\text { rnd } \\
r_{n}+\gamma_{n} \leq H} }}\end{subarray}}\left(\gamma_{n+1}-\gamma_{n}\right)^{2}+H^{2} \frac{T}{2 \pi} \log \frac{T}{2 \pi}+O\left(\frac{T}{\log ^{3} T}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +H^{2} \frac{T}{2 \pi} \log \frac{T}{2 \pi}+O\left(\frac{T}{\log ^{3} T}\right) \\
& =M_{1}+M_{2}+H^{2} \frac{T}{2 \pi} \log \frac{T}{2 \pi}+O\left(\frac{T}{\log ^{3} T}\right), \quad \text { say } .
\end{aligned}
$$

Now for $H \leq y \leq(C / \log \log T)$,

$$
\begin{aligned}
& \sum_{\substack{T / \log 2 \\
\gamma_{n}+1 \leq T_{n} \leq y_{n} \leq T}}\left(\gamma_{n+1}-\gamma_{n}\right) \leq 3 \sum_{\substack{T / \log 2 \\
\gamma_{n}+1-\gamma_{n} \geq \gamma_{n} \leq T}}\left(\gamma_{n+1}-\gamma_{n}-\frac{2}{3} y\right) \\
& \leq 3 \sum_{\substack{T / \log 2 \\
\tau n+1-\gamma_{n} \geq y}} \sum_{\substack{\pi \\
T_{n} \leq T}} \frac{1}{\left(\frac{2}{3} y \frac{1}{2 \pi} \log \frac{T}{2 \pi}\right)^{2}} \int_{\tau_{n}}^{\tau_{n+1}-(2 / 3) y}\left(S\left(t+\frac{2}{3} y\right)-S(t)\right)^{2} d t \\
& +O\left(\frac{T(\log \log T)^{2}}{y^{2} \log ^{3} T}\right) \\
& \leq \frac{3}{\left(\frac{2}{3} y \frac{1}{2 \pi} \log \frac{T}{2 \pi}\right)^{2}} \int_{0}^{T}\left(S\left(t+\frac{2}{3} y\right)-S(t)\right)^{2} d t+O\left(\frac{T(\log \log T)^{2}}{y^{2} \log ^{3} T}\right) .
\end{aligned}
$$

Using the above corollary, we get

$$
M_{1}+M_{2} \leq \frac{12 H T}{\left(\frac{2}{3} H \log \frac{T}{2 \pi}\right)^{2}}\left\{2 \log \left(\frac{2}{3} H \log \frac{T}{2 \pi}\right)+2 C_{o}+9-\frac{\sin \left(\frac{2}{3} H \log \frac{T}{2 \pi}\right)}{\frac{2}{3} H \log \frac{T}{2 \pi}}\right.
$$

$$
\left.+\frac{11 / 3}{\left(\frac{2}{3} H \log \frac{T}{2 \pi}\right)^{2}}+\frac{6}{\left(\frac{2}{3} H \log \frac{T}{2 \pi}\right)^{3}}+o(1)\right\}+O\left(T\left(\frac{\log \log T}{\log T}\right)^{2}\right)
$$

Putting $H=B / \log (T / 2 \pi)$ and taking $B=10$, we get

$$
\begin{aligned}
M & \leq \frac{2 \pi T}{\log \frac{T}{2 \pi}} \frac{1}{4 \pi^{2}}\left\{B^{2}+\frac{54 \pi}{B}\left(2 \log \frac{2 B}{3}+2 C_{o}+9-\frac{3}{2 B} \sin \left(\frac{2}{3} B\right)+\frac{33}{4 B^{2}}+\frac{81}{4 B^{3}}\right)+o(1)\right\} \\
& \leq 8.55 \times \frac{2 \pi T}{\log \frac{T}{2 \pi}} .
\end{aligned}
$$

We may remark here that we can estimate, in a similar manner, the sum $\sum_{r n \leq T}\left(\left(\gamma_{n+r}-\gamma_{n}\right) / r\right)^{2}$ for each integer $r \geq 2$.
§3. Proof of Lemma. We use the following explicit formula for $S(t)$ due to Selberg [10] (cf. 14.21 of Titchmarsh [11]). Let $\Lambda(n)$ be the von Mangoldt function. Then

$$
S(t)=-\frac{1}{\pi} \sum_{n<Y^{2}} \frac{\Lambda_{Y}(n) \sin (t \log n)}{n^{\sigma_{1}} \log n}+O\left(\frac{1}{\log Y}\left|\sum_{n<Y^{2}} \frac{\Lambda_{Y}(n)}{n^{\sigma_{1}+t t}}\right|\right)+O\left(\frac{\log t}{\log Y}\right)
$$

where $t>2,4 \leq Y \leq t^{2}, \sigma_{1}=(1 / 2)+(1 / \log Y)$ and

$$
\Lambda_{Y}(n)= \begin{cases}\Lambda(n) & \text { for } 1 \leq n \leq Y \\ \Lambda(n) \frac{\log \left(Y^{2} / n\right)}{\log Y} & \text { for } Y \leq n \leq Y^{2}\end{cases}
$$

We use this with $Y=T^{b}, 0<b<1 / 2$. We may suppose that $a \leq \sqrt{Y}$, since otherwise we may replace $\sqrt{\bar{Y}}-a$ by $\max (\sqrt{Y}-a, 0)$ in the argument below.

$$
\begin{aligned}
W= & \sum_{\sqrt{Y}-a<r \leq T} S(\gamma+a)+O(T \log T) \\
= & -\frac{1}{\pi} \sum_{n<Y^{2}} \frac{\Lambda_{Y}(n)}{n^{\sigma_{1}} \log n} \sum_{\sqrt{Y}-a<r \leq T} \sin ((\gamma+a) \log n) \\
& +O\left(\frac{1}{\log Y} \sum_{\sqrt{Y}-a<r \leq T}\left|\sum_{n<Y^{2}} \frac{\Lambda_{Y}(n)}{n^{\sigma_{1+i(\gamma+a)}}}\right|\right) \\
& +O\left(\frac{1}{\log Y} \sum_{\sqrt{Y}-a<r \leq T} \log (\gamma+a)\right)+O(T \log T) \\
= & W_{1}+W_{2}+W_{3}+O(T \log T), \quad \text { say. }
\end{aligned}
$$

Using theorem of [3], we get

$$
\begin{aligned}
W_{1} & \ll \sum_{n<Y^{2}} \frac{\Lambda_{Y}(n)}{n^{\sigma_{1}} \log n}\left|\sum_{\sqrt{Y}-a<r \leq T} n^{i r}\right| \\
& \ll \sum_{n<Y^{2}} \frac{\Lambda_{Y}(n)}{n^{\sigma_{1}} \log n}\left(T \frac{\Lambda(n)}{\sqrt{n}}+\sqrt{n} \log T \log \log T\right) \ll T \log T . \\
W_{2} & \ll \frac{1}{\log Y} \sqrt{T \log T}\left\{\sum_{\sqrt{Y}-a<r \leq T}\left|\sum_{n<Y^{2}} \frac{\Lambda_{Y}(n)}{n^{\sigma_{1}+i(Y+a)}}\right|^{2}\right\}^{1 / 2} \\
& \ll \frac{1}{\log Y} \sqrt{T \log T}\left\{T \log T \sum_{n<Y^{2}} \frac{\Lambda_{Y}^{2}(n)}{n^{\sigma_{1}}}+\sum_{m<n<Y^{2}} \frac{\Lambda_{Y}(m) \Lambda_{Y}(n)}{(m n)^{\sigma_{1}}}\right. \\
& \left.\left.\quad \times\left.\right|_{\sqrt{Y}-a<r \leq T}\left(\frac{n}{m}\right)^{i r} \right\rvert\,\right\}^{1 / 2}
\end{aligned}
$$

$$
=\frac{1}{\log Y} \sqrt{T \log T}\left\{W_{4}+W_{5\}^{1 / 2}}, \quad\right. \text { say. }
$$

Using theorem of [3] again, we get

$$
\begin{aligned}
W_{5} \ll & T \sum_{m<n<Y^{2}} \frac{\Lambda(n / m) \Lambda_{Y}(m) \Lambda_{Y}(n)}{n}+\sum_{m<n<Y 2} \frac{\Lambda_{Y}(m) \Lambda_{Y}(n)}{\sqrt{m n}} \frac{\log T}{\log \frac{n}{m}} \\
& +\sum_{m<n<Y^{2}} \frac{\Lambda_{Y}(m) \Lambda_{Y}(n)}{m} \log T+\sum_{m<n<Y^{2}} \frac{\Lambda_{Y}(m) \Lambda_{Y}(n)}{\sqrt{m n}}\left(\frac{n}{m}\right)^{1 / \log \log T} \frac{\log ^{2} T}{\log \log T} \\
& +\sum_{m<n<Y^{2}} \frac{\Lambda_{Y}(m) \Lambda_{Y}(n)}{n} \sum_{\frac{1}{2}(n / m)<k<2(n / m), k \neq(n / m)} \Lambda(k) \frac{1}{\left|\log \left(\frac{n}{m k}\right)\right|} .
\end{aligned}
$$

The last sum is

$$
\ll \log T \sum_{d<2 Y^{2}} \frac{1}{d}\left(\sum_{m k=a} \Lambda(k) \Lambda_{Y}(m)\right) \sum_{\substack{\exists d \sum_{n \lll 2 d}^{d} d n}} \frac{1}{\left.\log \left(\frac{n}{d}\right) \right\rvert\,} \ll T .
$$

Treating the other sums similarly, we get

$$
W_{5} \ll T \log ^{3} T .
$$

Since $W_{4} \ll T \log ^{3} T$, we get $W_{2} \ll T \log T$.
Since $W_{3} \ll T \log T$, we get

$$
W \ll T \log T .
$$

References

[1] A. Fujii: On the distribution of the zeros of the Riemann zeta function in short intervals. Bull. of A.M.S., 81, no. 1, 139-142 (1975).
[2] -: On the difference between r consecutive ordinates of the zeros of the Riemann zeta function. Proc. Japan Acad., 51, 741-743 (1975).
[3] -: On a theorem of Landau. ibid., 65A, 51-54 (1989).
[4] -: On the zeros of Dirichlet L-functions. I. Trans. of A.M.S., 196, 225-235 (1974).
[5] -: On the distribution of the zeros of the Riemann zeta function in short intervals. Proc. Japan Acad., 66A, 75-79.
[6] D. A. Goldston: On the function $S(t)$ in the theory of the Riemann zeta function. J. Number Theory, 27, 149-177 (1987).
[7] S. Gonek: An explicit formula of Landau and its applications (preprint).
[8] H. L. Montgomery: The pair correlation of the zeros of the zeta function. Proc. Symp. Pure Math., 24, A.M.S., 181-193 (1973).
[9] A. M. Odlyzko: The 10^{20}-th zero of the Riemann zeta function and 70 million of its neighbours (preprint).
[10] A. Selberg: Contributions to the theory of the Riemann zeta function. Arch. Math. Naturvid., 48, 89-155 (1946).
[11] E. C. Titchmarsh: The Theory of the Riemann Zeta Function. Oxford (1951).

