20. Minimal Currents and Relaxation of Variational Integrals on Mappings of Bounded Variation

By Patricio Aviles*) and Yoshikazu Giga**)

(Communicated by Kôsaku Yosida, m. J. A., March 12, 1990)

1. Introduction and main results. Let T be a 1-dimensional current of locally finite mass on \boldsymbol{R}^{m}. By the Riesz representation theorem T is identified with a \boldsymbol{R}^{m}-valued Radon measure $T=\left(T^{1}, \cdots, T^{m}\right.$) on \boldsymbol{R}^{m} (see e.g., [5,12]). If $\boldsymbol{F}=\boldsymbol{F}(y, \eta)$ is a nonnegative continuous function on $\boldsymbol{R}^{m} \times \boldsymbol{R}^{m}$ and is positively homogeneous of degree one in η, a new measure $F(y, T)$ is associated with T (cf. [10]). We consider a functional

$$
\begin{equation*}
I_{F}(T)=\int_{R^{m}} F(y, T) \tag{1}
\end{equation*}
$$

Here F is assumed to be convex in η and satisfy a growth condition

$$
\begin{equation*}
k|\eta| \leq F(y, \eta) \leq K|\eta| \tag{2}
\end{equation*}
$$

with $K \geq k>0$ independent of y and η. If T is a current representing an oriented C^{1} curve $C, I_{F}(T)$ is the length of the curve C with metric density F, so $I_{F}(T)$ agrees with the standard length of C in \boldsymbol{R}^{m} when $F(y, \eta)=|\eta|$.

We call S a minimal current from $a \in \boldsymbol{R}^{m}$ to $b \in \boldsymbol{R}^{m}$ if

$$
I_{F}(S)=\inf \left\{I_{F}(T) ; T \in \mathscr{M}_{1} \text { and } \partial T=\delta_{b}-\delta_{a}\right\}
$$

Here δ_{a} denotes the Dirac measure supported at a and ∂T denotes the boundary of T, i.e. $\partial T=\operatorname{div} T$. The space \mathscr{M}_{1} represents the set of all 1-currents of locally finite mass in \boldsymbol{R}^{m}. Our main result on minimal currents asserts that a shortest curve is a minimal current.

Theorem 1. There exists a current representing, a simple Lipschitz curve from a to b which is a minimal current. In particular,

$$
\begin{equation*}
\inf _{\substack{\partial T=\delta_{O_{j}}^{-\delta_{a}} \\ T \in M_{1}}} I_{F}(T)=\inf \left\{\int_{0}^{1} F(\gamma(t), \dot{\gamma}(t)) d t ; \gamma:[0,1] \longrightarrow R^{m}\right. \tag{3}
\end{equation*}
$$

$$
\text { is Lipschitz and } \gamma(0)=a, \gamma(1)=b\} \quad(\dot{\gamma}=d \gamma / d t) .
$$

If $F(y, \eta)$ is independent of y, we have proved in [2, Lemma 8.3] that the straight line from a to b is a minimal current. Theorem 1 has important applications in relaxations of variational integrals on $B V\left(\Omega, \boldsymbol{R}^{m}\right)$, the set of mapping $u: \Omega \rightarrow \boldsymbol{R}^{m}$ of bounded variation, where Ω is an open set in \boldsymbol{R}^{n}.

We consider a functional \mathscr{P} of C^{1} mapping $u: \Omega \rightarrow \boldsymbol{R}^{m}$

$$
\mathscr{F}(u)=\int_{\Omega} f(x, u(x), \nabla u(x)) d x
$$

The density function $f=f(x, y, \xi)$ we discuss here is a nonnegative continuous function in $\Omega \times \boldsymbol{R}^{m} \times \boldsymbol{R}^{n m}$ and convex in ξ. Here the Jacobi matrix $\nabla u(x)$ of u at x is identified with an element of $\boldsymbol{R}^{n m}$. We do not assume homoge-

[^0]nuity but a growth condition
$$
k|\xi| \leq f(x, y, \xi) \leq K(|\xi|+1)
$$

Under these conditions it is well-known that the recession function

$$
f_{\infty}(x, y, \xi)=\underline{\lim }_{t \downarrow 0} f(x, y, \xi / t) t
$$

exists and has the homogenuity in ξ as well as all other properties of f. For technical reasons we further assume the following equicontinuity. For every $\left(x_{0}, y_{0}\right) \in \Omega \times \boldsymbol{R}^{m}$ and $\varepsilon>0$ there is $\delta>0$ such that $\left|x-x_{0}\right|,\left|y-y_{0}\right|<\delta$ implies

$$
\left|f(x, y, \xi)-f\left(x_{0}, y_{0}, \xi\right)\right| \leq \varepsilon(1+|\xi|)
$$

Let $\overline{\mathscr{F}}$ be the lower semicontinuous $L_{\text {loc }}^{1}$ relaxation***) of \mathscr{P} on $B V\left(\Omega, \boldsymbol{R}^{m}\right)$, that is

$$
\overline{\mathscr{F}}(u)=\inf \left\{\underline{\lim }_{l \rightarrow \infty} \mathscr{F}\left(u_{l}\right) ; u_{l} \longrightarrow u \text { in } L_{\text {loc }}^{1}\left(\Omega, \boldsymbol{R}^{m}\right) \text { and } u_{l} \text { is } C^{1}\right\} .
$$

Our problem is to find an explicit representation of $\overline{\mathscr{F}}$ for $u \in B V\left(\Omega, R^{m}\right)$. This question is posed by De Giorgi [4]. When f does not depend on y this problem is solved by $[6,8,10]$. If f depends on y, so far only the cases $m=1$ and $n=1$ were settled by [3] and [11], respectively.

We shall answer to this problem for arbitrary $n, m \geq 1$ assuming that f satisfies an isotropy condition

$$
\begin{equation*}
f\left(x, y,\left(\xi_{i}^{j}\right)\right) \geq f\left(x, y,\left(\sum_{h=1}^{n} q_{n} \xi_{h}^{j} q_{i}\right)\right) \tag{4}
\end{equation*}
$$

where $q=\left(q_{1}, \cdots, q_{n}\right) \in \boldsymbol{R}^{n}$ and $\xi=\left(\xi_{i}^{j}\right) \in \boldsymbol{R}^{n m}, 1 \leq i \leq n, 1 \leq j \leq m$. For $u \in$ $B V\left(\Omega, \boldsymbol{R}^{m}\right)$ it is well-known $[5,7,12]$ that ∇u is a (matrix) Radom measure decomposed as

$$
\nabla u=\nabla u\left\lfloor\Omega_{0}+\nabla u\left\lfloor\left(\Omega-\Omega_{0}-\Sigma\right)+\nu \otimes\left(u^{+}-u^{-}\right) \mathcal{S}^{n-1} L \Sigma .\right.\right.
$$

Here Σ denotes the set of jump discontinuities of u and ν represents a unit normal to Σ. The functions $u^{ \pm}$are the trace of u on Σ defined by $u^{ \pm}(x)=$ $\varliminf_{\text {. }}^{10}$ $u(x \pm \varepsilon \nu(x))$ and \mathscr{G}^{n-1} denotes the $n-1$ dimensional Hausdorff measure. By $\mu\lfloor A$ we mean a measure on Ω defined by $(\mu\lfloor A)(B)=\mu(A \cap B)$ for $B \subset \Omega$, where μ is a measure. For $a, b \in \boldsymbol{R}^{m}$ and $q \in \boldsymbol{R}^{n}$ we introduce a distance like function:

$$
\begin{align*}
& D_{x}(a, b, q)=\inf \left\{\int_{0}^{1} f_{\infty}(x, \gamma(t), q \otimes \dot{\gamma}(t)) d t ;\right. \tag{5}\\
& \left.\gamma:[0,1] \longrightarrow \boldsymbol{R}^{m} \text { is Lipschitz and } \gamma(0)=a, \gamma(1)=b\right\}
\end{align*}
$$

A combination of Theorem 1 and results in [2] yield our main result for relaxation of \mathscr{P} when f sastisfies all above assumptions. By $|\mu|$ we mean the total variation measure of μ and $d \mu / d|\mu|$ denotes the Radon-Nikodym derivative.

Theorem 2. For $u \in B V\left(\Omega, R^{m}\right)$ it holds

$$
\begin{align*}
\overline{\mathscr{F}}(u)= & \int_{\Omega_{0}} f(x, u(x), \nabla u(x)) d x+\int_{\Omega_{-}-\Omega_{0}} f_{\infty}\left(x, u(x), \frac{d \nabla u}{d|\nabla u|}(x)\right)|\nabla u| \tag{6}\\
& +\int_{\Sigma} D_{x}\left(u^{-}(x), u^{+}(x), \nu(x)\right) d \mathscr{G}^{n-1}(x) .
\end{align*}
$$

***) This terminology is due to De Giorgi [4]. It is also called the lower semicontinuous envelope.

In this note we just give a brief sketch of proofs; the details will be published elsewhere.

After this work is completed, we are informed of a recent work of Ambrosio, Mortola and Tortorelli [1] which proves only " 2 " in (6) of Theorem 2 without (4). Moreover, they show that equality in (6) does not necessarily hold without assuming (4).
2. Discritization and networks. We approximate a current connecting a and b by real polyhedral chain (see [5] for the definition).

Lemma 3. Suppose that $T \in \mathscr{M}_{1}$ satisfies $\partial T=\delta_{b}-\delta_{a}, a, b \in \boldsymbol{R}^{m}$ and that its total mass $M(T)$ is finite. There is a sequence of real polyhedral chain $T_{s} \in \mathscr{M}_{1}$ with $\partial T_{s}=\delta_{b}-\delta_{a}$ such that T_{s} converges weakly to T and that $M\left(T_{s}\right)$ $\rightarrow M(T) a s \varepsilon \rightarrow 0$.

Sketch of the proof. We take $L \in \mathscr{M}_{1}$ representing a piecewise linear curve from a to b such that $\boldsymbol{M}(T)=\boldsymbol{M}(L)+\boldsymbol{M}(R)$ with $R=T-L$. We may assume that R is smooth by a standard mollification. Since $\partial R=0$, Poincaré's lemma implies that there is a smooth 2 -current Φ such that $R=\partial \Phi$. We next approximate Φ by a piecewise linear Ψ with compact support associated with a simplicial decomposition of a large cube. For simplicity we only discuss the case $m=2$ so that Ψ is a scalar function. We approximate Ψ by a piecewise constant function

$$
\Psi_{.}(x)=k \varepsilon \quad \text { if } \theta+k \varepsilon \leq \Psi(x)<(k+1) \varepsilon+\theta, \quad k: \text { integer }
$$

so that $\Psi_{\bullet} \rightarrow \Psi$ and $\boldsymbol{M}\left(\partial \Psi_{\circ}\right) \rightarrow \boldsymbol{M}(\partial \Psi)$ as $\varepsilon \rightarrow 0$. We take $\theta \in \boldsymbol{R}$ such that

$$
M\left(L+\partial \Psi_{0}\right)=M(L)+M\left(\partial \Psi_{0}\right)
$$

We thus find a desired approximation $T_{\circ}=L+\partial \Psi_{\bullet}$.
Sketch of the proof of Theorem 1. Let $\left\{T_{j}\right\}$ be a minimizing sequence of (7)

$$
\inf \left\{I_{F}(T) ; T \in \mathscr{M}_{1}, \partial T=\delta_{b}-\delta_{a}\right\}
$$

By Lemma 3 we approximate T_{j} by a real polyhedral chain $T_{j 6}$. Let P denote the support of $T_{j_{s}}$. Since P is regarded as a network, applying the theory of minimal flow problem (see e.g. [9]) to
$\inf \left\{I_{F}(T) ; T\right.$ is real polyhedral chain supported in P and $\left.\partial T=\delta_{b}-\delta_{a}\right\}$
we see the infimum is attained at multiplicity one current $S_{j 。}$ representing a Lipschitz curve from a to b. By Reshetnyak's continuity theorem [10] $\boldsymbol{M}\left(T_{j s}\right) \rightarrow \boldsymbol{M}\left(T_{j}\right)$ with (2) implies $I_{F}\left(T_{j_{s}}\right) \rightarrow I_{F}\left(T_{j}\right)$ as $\varepsilon \rightarrow 0$. We now observe that $S_{j \varepsilon}$ is a minimizing sequence of (7) by taking a subsequence $\varepsilon=\varepsilon_{j} \rightarrow 0$ since $I_{F}\left(S_{j_{s}}\right) \leq I_{F}\left(T_{j_{s}}\right)$. This proves (3). By a standard compactness argument and (2) we see the infimum of the right hand side of (3) is attained at a simple Lipschitz curve from a to b.
3. Skecth of the proof of Theorem 2. We shall prove " \geq " in (6). Let \tilde{D}_{x} denote

$$
\tilde{D}_{x}(a, b, \nu)=\inf \left\{\int_{R^{m}} f_{\infty}\left(x, y,\left(S_{i}^{j}\right)\right) ; \partial S_{i}=\nu_{i}\left(\delta_{b}-\delta_{a}\right), S_{i} \in \mathscr{M}_{1}, 1 \leq i \leq n\right\} .
$$

From main results in [2, Theorems 5.1 and 8.1] it follows that

$$
\overline{\mathscr{I}}(u)=\int_{\Omega_{0}} f(x, u, \nabla u) d x+\int_{\Omega_{-\Omega}-\Sigma} f_{\infty}\left(x, u, \frac{d \nabla u}{d|\nabla u|}\right)|\nabla u|+\int_{\Sigma} \theta(x) d \mathscr{I}^{n-1}(x)
$$

with some θ satisfying $\theta(x) \geq \tilde{D}_{x}\left(u^{-}(x), u^{+}(x), \nu(x)\right)$.
Applying (4) and Theorem 1 with $F(y, \eta)=f_{\infty}(x, y, \nu(x) \otimes \eta)$ in (1) yields $\tilde{D}_{x}(a, b, \nu) \geq D_{x}(a, b, \nu)$, where D_{x} is defined in (5). We thus prove " \geq " in (6).

The converse inequality is proved by approximating u by piecewise constant functions. We note that this part is independently proved by [1].

References

[1] L. Ambrosio, S. Mortola, and V. M. Tortorelli: Functionals with linear growth defined on vector valued $B V$ functions (preprint).
[2] P. Aviles and Y. Giga: Variational integrals on mappings of bounded variation and their lower semicontinuity (preprint).
[3] G. Dal Maso: Integral representation of $B V(\Omega)$ of Γ-limits of variational integrals. Manuscripta Math., 30, 387-417 (1980).
[4] E. De Giorgi: G-operators and Γ-convergence. Proceeding of ICM Poland, August 16-24, 1983, Warszawa, 2, 1175-1191 (1983).
[5] H. Federer: Geometric Measure Theory. Springer, Berlin-Heidelberg-New York (1969).
[6] M. Giaguinta, G. Modica, and J. Souček: Functionals with linear growth in the calculus of variation. I. Comment. Math. Univ. Carolinae, 20, 143-156 (1979).
[7] E. Giusti: Minimal Surfaces and Functions of Bounded Variation. Birkhauser, Boston-Basel-Stuttgart (1984).
[8] C. Goffman and J. Serrin: Sublinear functions of measures and variational integrals. Duke Math. J., 31, 159-178 (1964).
[9] M. Iri: Network Flow, Transportation and Scheduling. Academic Press, New York-London (1969).
[10] Yu. G. Reshetnyak: Weak convergence of completely additive vector functions on a set. Siberian Math. J., 9, 1039-1045 (1968) (translation of Sibirsk. Math. Z., 9, 1386-1394 (1968)).
[11] R. T. Rockaffelar: Dual problems of Lagrange for arcs of bounded variation. Calculus of Variations and Control Theory (ed. D. L. Russel). Academic Press, pp. 139-192 (1976).
[12] L. Simon: Lectures on Geometric Measure Theory. Proceeding of the Centre for Mathematical Analysis, Australian National University, 3 (1983).

[^0]: *) Department of Mathematics, University of Illinois, Urbana, USA.
 **) Department of Mathematics, Hokkaido University.

