20. Minimal Currents and Relaxation of Variational Integrals on Mappings of Bounded Variation

By Patricio AVILES*) and Yoshikazu GIGA**)

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1990)

1. Introduction and main results. Let T be a 1-dimensional current of locally finite mass on \mathbb{R}^m . By the Riesz representation theorem T is identified with a \mathbb{R}^m -valued Radon measure $T = (T^1, \dots, T^m)$ on \mathbb{R}^m (see e.g., [5,12]). If $F = F(y, \eta)$ is a nonnegative continuous function on $\mathbb{R}^m \times \mathbb{R}^m$ and is positively homogeneous of degree one in η , a new measure F(y, T) is associated with T (cf. [10]). We consider a functional

(1)
$$I_F(T) = \int_{\mathbb{R}^m} F(y, T).$$

Here F is assumed to be convex in η and satisfy a growth condition (2) $k|\eta| \leq F(y, \eta) \leq K|\eta|$

with $K \ge k > 0$ independent of y and η . If T is a current representing an oriented C^1 curve C, $I_F(T)$ is the length of the curve C with metric density F, so $I_F(T)$ agrees with the standard length of C in \mathbb{R}^m when $F(y, \eta) = |\eta|$.

We call S a *minimal current* from $a \in \mathbf{R}^m$ to $b \in \mathbf{R}^m$ if

 $I_{F}(S) = \inf \{I_{F}(T); T \in \mathcal{M}_{1} \text{ and } \partial T = \delta_{b} - \delta_{a} \}.$

Here δ_a denotes the Dirac measure supported at a and ∂T denotes the boundary of T, *i.e.* $\partial T = \operatorname{div} T$. The space \mathcal{M}_1 represents the set of all 1-currents of locally finite mass in \mathbb{R}^m . Our main result on minimal currents asserts that a shortest curve is a minimal current.

Theorem 1. There exists a current representing, a simple Lipschitz curve from a to b which is a minimal current. In particular,

(3)
$$\inf_{\substack{\vartheta T = \vartheta_{0} - \vartheta_{0} \\ T \in \mathcal{M}_{1}}} I_{F}(T) = \inf \left\{ \int_{0}^{1} F(\gamma(t), \dot{\gamma}(t)) dt; \gamma : [0, 1] \longrightarrow \mathbb{R}^{m} \\ is \ Lipschitz \ and \ \gamma(0) = a, \ \gamma(1) = b \right\} \quad (\dot{\gamma} = d\gamma/dt).$$

If $F(y,\eta)$ is independent of y, we have proved in [2, Lemma 8.3] that the straight line from a to b is a minimal current. Theorem 1 has important applications in relaxations of variational integrals on $BV(\Omega, \mathbb{R}^m)$, the set of mapping $u: \Omega \to \mathbb{R}^m$ of bounded variation, where Ω is an open set in \mathbb{R}^n .

We consider a functional \mathcal{F} of C^1 mapping $u: \Omega \to \mathbb{R}^m$

$$\mathcal{F}(u) = \int_{\mathcal{Q}} f(x, u(x), \nabla u(x)) dx.$$

The density function $f = f(x, y, \xi)$ we discuss here is a nonnegative continuous function in $\Omega \times \mathbb{R}^m \times \mathbb{R}^{nm}$ and convex in ξ . Here the Jacobi matrix $\nabla u(x)$ of u at x is identified with an element of \mathbb{R}^{nm} . We do not assume homoge-

^{*)} Department of Mathematics, University of Illinois, Urbana, USA.

^{**&#}x27; Department of Mathematics, Hokkaido University.

No. 3]

nuity but a growth condition

 $k|\xi| \leq f(x, y, \xi) \leq K(|\xi|+1).$

Under these conditions it is well-known that the recession function

$$f_{\infty}(x, y, \xi) = \underline{\lim}_{t \downarrow 0} f(x, y, \xi/t)t$$

exists and has the homogenuity in ξ as well as all other properties of f. For technical reasons we further assume the following equicontinuity. For every $(x_0, y_0) \in \Omega \times \mathbb{R}^m$ and $\varepsilon > 0$ there is $\delta > 0$ such that $|x-x_0|$, $|y-y_0| < \delta$ implies

$$|f(x, y, \xi) - f(x_0, y_0, \xi)| \leq \varepsilon (1 + |\xi|).$$

Let $\overline{\mathcal{F}}$ be the lower semicontinuous L^{1}_{loc} relaxation^{***)} of \mathcal{F} on $BV(\Omega, \mathbb{R}^{m})$, that is

$$\overline{\mathcal{F}}(u) = \inf \{ \underline{\lim_{l \to \infty} \mathcal{F}}(u_l); u_l \longrightarrow u \text{ in } L^1_{\text{loc}}(\Omega, \mathbb{R}^m) \text{ and } u_l \text{ is } C^1 \}.$$

Our problem is to find an explicit representation of $\overline{\mathcal{F}}$ for $u \in BV(\Omega, \mathbb{R}^m)$. This question is posed by De Giorgi [4]. When f does not depend on y this problem is solved by [6, 8, 10]. If f depends on y, so far only the cases m=1 and n=1 were settled by [3] and [11], respectively.

We shall answer to this problem for arbitrary $n, m \ge 1$ assuming that f satisfies an isotropy condition

(4)
$$f(x, y, (\xi_i^j)) \ge f\left(x, y, \left(\sum_{h=1}^n q_h \xi_h^j q_i\right)\right),$$

where $q = (q_1, \dots, q_n) \in \mathbb{R}^n$ and $\xi = (\xi_i^j) \in \mathbb{R}^{nm}$, $1 \le i \le n$, $1 \le j \le m$. For $u \in BV(\Omega, \mathbb{R}^m)$ it is well-known [5, 7, 12] that ∇u is a (matrix) Radom measure decomposed as

 $\nabla u = \nabla u \lfloor \Omega_0 + \nabla u \lfloor (\Omega - \Omega_0 - \Sigma) + \nu \otimes (u^* - u^-) \mathcal{H}^{n-1} \lfloor \Sigma.$

Here Σ denotes the set of jump discontinuities of u and ν represents a unit normal to Σ . The functions u^{\pm} are the trace of u on Σ defined by $u^{\pm}(x) = \lim_{\epsilon \to 0} u(x \pm \epsilon \nu(x))$ and \mathcal{H}^{n-1} denotes the n-1 dimensional Hausdorff measure. By $\mu \lfloor A$ we mean a measure on Ω defined by $(\mu \lfloor A)(B) = \mu(A \cap B)$ for $B \subset \Omega$, where μ is a measure. For $a, b \in \mathbb{R}^m$ and $q \in \mathbb{R}^n$ we introduce a distance like function:

(5)
$$D_{x}(a, b, q) = \inf \left\{ \int_{0}^{1} f_{\infty}(x, \gamma(t), q \otimes \dot{\gamma}(t)) dt; \\ \gamma: [0, 1] \longrightarrow \mathbb{R}^{m} \text{ is Lipschitz and } \gamma(0) = a, \gamma(1) = b \right\}$$

A combination of Theorem 1 and results in [2] yield our main result for relaxation of \mathcal{P} when f sastisfies all above assumptions. By $|\mu|$ we mean the total variation measure of μ and $d\mu/d|\mu|$ denotes the Radon-Nikodym derivative.

Theorem 2. For
$$u \in BV(\Omega, \mathbb{R}^m)$$
 it holds

$$\overline{\mathcal{F}}(u) = \int_{\mathcal{Q}_0} f(x, u(x), \nabla u(x)) dx + \int_{\mathcal{Q}-\mathcal{Q}_0-\Sigma} f_{\infty}\left(x, u(x), \frac{d\nabla u}{d|\nabla u|}(x)\right) |\nabla u| + \int_{\Sigma} D_x(u^-(x), u^+(x), \nu(x)) d\mathcal{H}^{n-1}(x).$$

***) This terminology is due to De Giorgi [4]. It is also called the lower semicontinuous envelope. In this note we just give a brief sketch of proofs; the details will be published elsewhere.

After this work is completed, we are informed of a recent work of Ambrosio, Mortola and Tortorelli [1] which proves only " \geq " in (6) of Theorem 2 without (4). Moreover, they show that equality in (6) does not necessarily hold without assuming (4).

2. Discritization and networks. We approximate a current connecting a and b by real polyhedral chain (see [5] for the definition).

Lemma 3. Suppose that $T \in \mathcal{M}_1$ satisfies $\partial T = \delta_b - \delta_a$, $a, b \in \mathbb{R}^m$ and that its total mass M(T) is finite. There is a sequence of real polyhedral chain $T_* \in \mathcal{M}_1$ with $\partial T_* = \delta_b - \delta_a$ such that T_* converges weakly to T and that $M(T_*) \rightarrow M(T)$ as $\varepsilon \rightarrow 0$.

Sketch of the proof. We take $L \in \mathcal{M}_1$ representing a piecewise linear curve from a to b such that M(T) = M(L) + M(R) with R = T - L. We may assume that R is smooth by a standard mollification. Since $\partial R = 0$, Poincaré's lemma implies that there is a smooth 2-current Φ such that $R = \partial \Phi$. We next approximate Φ by a piecewise linear Ψ with compact support associated with a simplicial decomposition of a large cube. For simplicity we only discuss the case m=2 so that Ψ is a scalar function. We approximate Ψ by a piecewise constant function

$$\begin{split} & \Psi_{\bullet}(x) = k\varepsilon \quad \text{if } \theta + k\varepsilon \leq \Psi(x) < (k+1)\varepsilon + \theta, \quad k: \text{ integer} \\ \text{so that } \Psi_{\bullet} \to \Psi \text{ and } M(\partial \Psi_{\bullet}) \to M(\partial \Psi) \text{ as } \varepsilon \to 0. \quad \text{We take } \theta \in \mathbf{R} \text{ such that} \\ & M(L + \partial \Psi_{\bullet}) = M(L) + M(\partial \Psi_{\bullet}). \end{split}$$

We thus find a desired approximation $T_{*}=L+\partial \Psi_{*}$.

Sketch of the proof of Theorem 1. Let $\{T_j\}$ be a minimizing sequence of (7) $\inf \{I_F(T); T \in \mathcal{M}_1, \partial T = \delta_b - \delta_a\}.$

By Lemma 3 we approximate T_j by a real polyhedral chain $T_{j,i}$. Let P denote the support of $T_{j,i}$. Since P is regarded as a network, applying the theory of minimal flow problem (see e.g. [9]) to

inf $\{I_F(T); T \text{ is real polyhedral chain supported in } P \text{ and } \partial T = \delta_b - \delta_a\}$ we see the infimum is attained at multiplicity one current S_{j_*} representing a Lipschitz curve from a to b. By Reshetnyak's continuity theorem [10] $M(T_{j_*}) \rightarrow M(T_j)$ with (2) implies $I_F(T_{j_*}) \rightarrow I_F(T_j)$ as $\varepsilon \rightarrow 0$. We now observe that S_{j_*} is a minimizing sequence of (7) by taking a subsequence $\varepsilon = \varepsilon_j \rightarrow 0$ since $I_F(S_{j_*}) \leq I_F(T_{j_*})$. This proves (3). By a standard compactness argument and (2) we see the infimum of the right hand side of (3) is attained at a simple Lipschitz curve from a to b.

3. Skecth of the proof of Theorem 2. We shall prove " \geq " in (6). Let \tilde{D}_x denote

$$\tilde{D}_x(a, b, \nu) = \inf \left\{ \int_{\mathbb{R}^m} f_{\infty}(x, y, (S_i^j)); \partial S_i = \nu_i (\delta_b - \delta_a), S_i \in \mathcal{M}_i, 1 \le i \le n \right\}.$$

From main results in [2, Theorems 5.1 and 8.1] it follows that

$$\overline{\mathcal{F}}(u) = \int_{\mathcal{Q}_0} f(x, u, \nabla u) dx + \int_{\mathcal{Q}-\mathcal{Q}_0-\Sigma} f_{\infty}\left(x, u, \frac{d\nabla u}{d|\nabla u|}\right) |\nabla u| + \int_{\Sigma} \theta(x) d\mathcal{H}^{n-1}(x)$$

No. 3]

with some θ satisfying $\theta(x) \ge \tilde{D}_x(u^-(x), u^+(x), \nu(x))$.

Applying (4) and Theorem 1 with $F(y,\eta) = f_{\infty}(x, y, \nu(x) \otimes \eta)$ in (1) yields $\tilde{D}_x(a, b, \nu) \ge D_x(a, b, \nu)$, where D_x is defined in (5). We thus prove " \ge " in (6).

The converse inequality is proved by approximating u by piecewise constant functions. We note that this part is independently proved by [1].

References

- [1] L. Ambrosio, S. Mortola, and V. M. Tortorelli: Functionals with linear growth defined on vector valued BV functions (preprint).
- [2] P. Aviles and Y. Giga: Variational integrals on mappings of bounded variation and their lower semicontinuity (preprint).
- [3] G. Dal Maso: Integral representation of $BV(\Omega)$ of Γ -limits of variational integrals. Manuscripta Math., **30**, 387–417 (1980).
- [4] E. De Giorgi: G-operators and Γ-convergence. Proceeding of ICM Poland, August 16-24, 1983, Warszawa, 2, 1175-1191 (1983).
- [5] H. Federer: Geometric Measure Theory. Springer, Berlin-Heidelberg-New York (1969).
- [6] M. Giaguinta, G. Modica, and J. Souček: Functionals with linear growth in the calculus of variation. I. Comment. Math. Univ. Carolinae, 20, 143–156 (1979).
- [7] E. Giusti: Minimal Surfaces and Functions of Bounded Variation. Birkhauser, Boston-Basel-Stuttgart (1984).
- [8] C. Goffman and J. Serrin: Sublinear functions of measures and variational integrals. Duke Math. J., 31, 159-178 (1964).
- [9] M. Iri: Network Flow, Transportation and Scheduling. Academic Press, New York-London (1969).
- [10] Yu. G. Reshetnyak: Weak convergence of completely additive vector functions on a set. Siberian Math. J., 9, 1039-1045 (1968) (translation of Sibirsk. Math. Z., 9, 1386-1394 (1968)).
- [11] R. T. Rockaffelar: Dual problems of Lagrange for arcs of bounded variation. Calculus of Variations and Control Theory (ed. D. L. Russel). Academic Press, pp. 139-192 (1976).
- [12] L. Simon: Lectures on Geometric Measure Theory. Proceeding of the Centre for Mathematical Analysis, Australian National University, 3 (1983).