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It is known that, for a contraction T (i.e., TIII) on a Hilbert space

H(r) {x e H Tx I= T*x I--Ix n=1,2, ...}

( {x e H; T*TnX= TnT*x= x}

is the maximal reducing subspace for T on which the restriction T H(r) of
T is unitary. Then we say that T IH(r) is the unitary part of T.

A bounded linear operator T on a Hilbert space H is dominant if
(T--2I)Hc(T--I)*H for all e a(T). It is easily seen, by [1], that this
condition is equivalent to the existence of a constant M for each e such
that (T--2I)*x]M(T--2I)x or all x ell. Clearly every hyponormal
operator (i.e., Tx]] T*x]] for all x e H) is dominant.

The purpose of this note is to give more precise cha.racterization of
Hu) for the case where T is a dominant contraction.

Let T e a contraction on H, then the sequence {T*T} is monotoni-
cally decreasing and hence converges to a non-negative contraction A
and T*AT=A, where A is the (unique.) non-negative square root of A.
Then we have

Lemma 1. For any positive integer n,
]ArTx =Arx T*Arx for all x e H

and hence ArT is hyponormal.

Proof. ArTx= (T*ATx, x}= (Ax, x}=Arx ]T*Arx or
all x e H because T* 1.

Lemma 2. If ArT is normal, then Ar is a projection which commutes
with T and H ArH.

Proof. ArT is normal ]]T*Arx ]=]]Arx] or all x e H by Lemma 1
TT*Arx=Arx for all x e H because T* <1= i.e., TT*Ar At.
Then TA=T(T*AT)=(TT*Ar)ArT=AT and hence Ar commutes

with T. Thus T*TA=T*ATn=A and A=A a.nd hence Ar is a pro-
jection.

Next, if x e H), then x=Ax e ArH and hence H ArH. Conver-
sely, for any xeH and n=l,2,...,

]]TArx]]= ]ArTx]]=
by Lemma 1 and
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T*nArx]l=]l T*Ar(T*n-lx)
T*A(T*-2x)

Therefore ArHH(r).
Theorem. If T* is a dominant contraction on H, then Ar is a pro.lee-

tion which commutes with T and H(r =ArH.
Proof. By Lemma 2, we have only to prove that ArT is normal. Let

ArT=VAr is the polar decomposition of ArT. Then ArH is invariant

under both Vr and T*. By the decomposition H=ArH(ArH)+/-, we have

0 V]’ T, T
V,, Vr lAtH is an isometry because

ArT=VrAr=[VA
is hyponorma.1 and 0 e a(V,,A,,) by Lemma 1. And it is easily seen that

TI*=T*IAr’ is also dominant by the definition and that A is injective
with dense range. We obtain

AliVe=TA from ATT VTAT.
Hence VI and T are normal by [3; Theorem 1] a.nd V commutes with

A by [2; Theorem 1]. Therefore

ArT [VA" 00]
is normal.
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