71. On the Unitary Part of Dominant Contractions By Takashi Yoshino Department of Mathematics, College of General Education, Tôhoku University (Communicated by Kunihiko Kodaira, M. J. A., Nov. 9, 1990) It is known that, for a contraction T (i.e., $||T|| \le 1$) on a Hilbert space H, $$H_T^{(u)} = \{ x \in H ; ||T^n x|| = ||T^{*n} x|| = ||x||, n = 1, 2, \dots \}$$ $$= \bigcap_{n=1}^{\infty} \{ x \in H ; T^{*n} T^n x = T^n T^{*n} x = x \}$$ is the maximal reducing subspace for T on which the restriction $T|H_T^{(u)}$ of T is unitary. Then we say that $T|H_T^{(u)}$ is the unitary part of T. A bounded linear operator T on a Hilbert space H is dominant if $(T-\lambda I)H\subset (T-\lambda I)^*H$ for all $\lambda\in\sigma(T)$. It is easily seen, by [1], that this condition is equivalent to the existence of a constant M_λ for each $\lambda\in\mathbb{C}$ such that $\|(T-\lambda I)^*x\|\leq M_\lambda\|(T-\lambda I)x\|$ for all $x\in H$. Clearly every hyponormal operator (i.e., $\|Tx\|\geq \|T^*x\|$ for all $x\in H$) is dominant. The purpose of this note is to give more precise characterization of $H_T^{(u)}$ for the case where T is a dominant contraction. Let T be a contraction on H, then the sequence $\{T^{*n}T^n\}$ is monotonically decreasing and hence converges to a non-negative contraction A_T^2 and $T^*A_T^2T=A_T^2$, where A_T is the (unique) non-negative square root of A_T^2 . Then we have Lemma 1. For any positive integer n, $$||A_T T^n x|| = ||A_T x|| \ge ||T^{*n} A_T x||$$ for all $x \in H$ and hence A_TT^n is hyponormal. $Proof. \quad \|A_TT^nx\|^2 = \langle T^{*n}A_T^2T^nx, \, x\rangle = \langle A_T^2x, \, x\rangle = \|A_Tx\|^2 \geq \|T^{*n}A_Tx\|^2 \text{ for all } x \in H \text{ because } \|T^*\| \leq 1.$ **Lemma 2.** If A_TT is normal, then A_T is a projection which commutes with T and $H_T^{(u)} = A_TH$. *Proof.* A_TT is normal $\rightleftharpoons ||T^*A_Tx|| = ||A_Tx||$ for all $x \in H$ by Lemma 1 $\rightleftharpoons TT^*A_Tx = A_Tx$ for all $x \in H$ because $||T^*|| \le 1$ i.e., $TT^*A_T = A_T$. Then $TA_T^2 = T(T^*A_T^2T) = (TT^*A_T)A_TT = A_T^2T$ and hence A_T commutes with T. Thus $T^{*n}T^nA_T^2 = T^{*n}A_T^2T^n = A_T^2$ and $A_T^4 = A_T^2$ and hence A_T is a projection. Next, if $x \in H_T^{(u)}$, then $x = A_T^2 x \in A_T H$ and hence $H_T^{(u)} \subset A_T H$. Conversely, for any $x \in H$ and $n = 1, 2, \cdots$, $$||T^nA_Tx|| = ||A_TT^nx|| = ||A_Tx||$$ by Lemma 1 and $$\|T^{*n}A_Tx\| = \|T^*A_T(T^{*n-1}x)\| = \|A_T(T^{*n-1}x)\|$$ $$= \|T^*A_T(T^{*n-2}x)\| = \|A_T(T^{*n-2}x)\|$$ $$= \cdots = \|A_Tx\|.$$ Therefore $A_T H \subset H_T^{(u)}$. Theorem. If T^* is a dominant contraction on H, then A_T is a projection which commutes with T and $H_T^{(u)} = A_T H$. *Proof.* By Lemma 2, we have only to prove that A_TT is normal. Let $A_TT = V_TA_T$ is the polar decomposition of A_TT . Then $\widetilde{A_TH}$ is invariant under both V_T and T^* . By the decomposition $H = \widetilde{A_TH} \oplus (\widetilde{A_TH})^{\perp}$, we have $$egin{aligned} V_{T} = egin{bmatrix} V_{11} & V_{12} \ 0 & V_{22} \end{bmatrix}, & T = egin{bmatrix} T_{11} & 0 \ T_{21} & T_{22} \end{bmatrix}, & A_{T} = egin{bmatrix} A_{11} & 0 \ 0 & 0 \end{bmatrix}. \end{aligned}$$ $V_{11} = V_T | \widetilde{A_T H}$ is an isometry because $$A_T T = V_T A_T = \begin{bmatrix} V_{11} A_{11} & 0 \\ 0 & 0 \end{bmatrix}$$ is hyponormal and $0 \notin \sigma_p(V_{11}A_{11})$ by Lemma 1. And it is easily seen that $T_{11}^* = T^* \mid \widetilde{A_TH}$ is also dominant by the definition and that A_{11} is injective with dense range. We obtain $$A_{11}V_{11}^* = T_{11}^*A_{11}$$ from $A_TT = V_TA_T$. Hence V_{11} and T_{11} are normal by [3; Theorem 1] and V_{11} commutes with A_{11} by [2; Theorem 1]. Therefore $$A_T T = \begin{bmatrix} V_{11} A_{11} & 0 \\ 0 & 0 \end{bmatrix}$$ is normal. ## References - [1] R. G. Douglas: On majorization, factorization, and range-inclusion of operators on Hilbert space. Proc. A. M. S., 17, 413-415 (1966). - [2] J. G. Stampfli and B. L. Wadhwa: An asymmetric Putnam-Fuglede theorem for dominant operators. Indiana Univ. Math. J., 25, 359-365 (1976). - [3] —: On dominant operators. Monatsh. für Math., 84, 143-153 (1977).