69. The Plancherel Formula for the Symmetric Space G_c/G_R

By Shigeru SANO

Department of Mathematics, University of Industrial Technology (Communicated by Kunihiko Kodaira, M. J. A., Nov. 9, 1990)

Let G_{σ} be a complex linear connected reductive group, and τ an involutive automorphism of G_c . Denote by G_c^r the set of all fixed points of τ in G_c , and by $(G_c^{\dagger})_0$ its identity components. Take a subgroup G_R such that $(G_C^r)_0 \subset G_R \subset G_C^r$, then $[G_R: (G_R)_0] < \infty$. Let θ be an involution of G_C satisfying that $\theta \tau = \tau \theta$ and $\theta(G) = G$ for $G = G_R$.

Let \mathfrak{g}_{σ} be the complex reductive Lie algebra corresponding to G_{σ} . The automorphisms of \mathfrak{g}_c induced by τ and θ of G_c are denoted by the same letters τ and θ respectively. The decomposition according to the involution τ (resp. θ) are denoted as $\mathfrak{g}_C = \mathfrak{g} + \mathfrak{q}$ (resp. $\mathfrak{g}_C = \mathfrak{k} + \mathfrak{p}$). Let G_H be a complexification of G_c and let g_H be its Lie algebra. The dual of g_c in g_H is defined by $g_c^d = f \cap g + i(f \cap g) + i(p \cap g) + p \cap g$ and the dual of f is given by $f^d = f \cap g$ $+i(\mathfrak{p}\cap\mathfrak{q})$ $(i=\sqrt{-1})$. Let K be the analytic subgroup of G_c corresponding to \mathfrak{k} , and K^d and G_C^d be those of G_H according to \mathfrak{k}^d and \mathfrak{g}_C^d respectively. this paper, we study harmonic analysis on the symmetric space $X = G_c/G_R$. The symmetric space G_c/G_R is substantially, "the dual" space of the space $G_R \cong (G_R \times G_R)/G_R$, and we call it the c-dual of the latter. Actually, there exist several dualities between continuous series of X and discrete series of G_R . In § 1, we study continuous series and corresponding invariant spherical distributions on X. In § 2, we discuss general principal series containing the discrete series. In §3, we study Eisenstein integral and its constant term, and in § 4 Plancherel formula.

Continuous series. Here in § 1, we suppose that the symmetric pair (g_c, g) has a sprit Cartan subspace a. Let P = MAN $(MA = Z_{g_c}(a), A =$ $\exp \alpha$) be the minimal parabolic subgroup associated to α . Then GP is an open orbit of $G \setminus G_c$. Denote the set of positive roots of a associated to P by $\Sigma^+(\alpha)$, and put $\rho = (1/2) \sum_{\alpha \in \Sigma^+(\alpha)} \alpha$. Let α^* be the dual of α and \mathcal{G} be a Weyl chamber in $i\alpha^*$. If $\alpha \in \Sigma^+(\alpha)$, let $H_\alpha \in \alpha$ be determined by using Killing form: $\langle H_a, H \rangle = \alpha(H)$, $H \in \alpha$. We define Poisson kernels $P_{\nu}(g)$ for $\nu \in \mathcal{F}$ as follows: $P_{\nu}(g) = \exp \nu \{H(g)\}\ (g^{-1} \in GM \cdot \exp H(g) \cdot N) \text{ and } P_{\nu}(g) = 0 \ (g^{-1} \notin GP).$ Giving a Haar measure dg on G and a G_c -invariant measure dx (x=gG)on X. We define an invariant spherical distribution on X by

$$\Phi_{\imath}(f) = \int_{X} \phi_{\imath}(x) f(x) dx \qquad (f(x) \in C_{\mathcal{C}}^{\infty}(X)),$$

 $\phi_{\lambda}(f) = \int_{X} \phi_{\lambda}(x) f(x) dx \qquad (f(x) \in C_{\mathcal{C}}^{\infty}(X)),$ where $\phi_{\lambda}(x) = \int_{\mathcal{C}} P_{\rho-\lambda}(hx) dh$. Let W be the Weyl group of the pair $(\mathfrak{g}_{\mathcal{C}}, \mathfrak{a}_{\mathcal{C}})$ and let W_G be the group defined by $W_G = N_G(A)/Z_G(A)$. We put $W^* = W/W_G$ and define invariant spherical distributions $\Theta_{\lambda} = \sum_{w \in W^*} \Phi_{w\lambda}$ by taking sum

over W^* . Let X' (resp. \mathcal{D}') be the set of all regular elements of X (resp. \mathcal{D}). If we normalize the Haar measure on G, then we have:

Proposition 1.1. The distributions Θ_{λ} agree with analytic functions on $A' = A \cap X'$. Moreover for $\lambda \in \mathcal{P}'$, we have

$$\Theta_{\lambda|_{A'}} = \frac{\sum_{w \in W} \varepsilon(w) e^{w\lambda(X)}}{\pi(\lambda) \varDelta(\exp X)} \quad (X \in \mathfrak{a}),$$

where $\pi(\mu) = \prod_{\alpha>0} \mu(H_{\alpha})$.

For a function f(x) on X, we choose an $f_0 \in C_c^{\infty}(G_c)$ such that the integral of f_0 over gG agree with the value f(x) for x=gG. For a function h(g) on G_c , we put $h^*(g)=\operatorname{conj} h(g^{-1})$.

Proposition 1.2. For $f(x) \in C_c^{\infty}(X)$ satisfying supp $f \subset G[A]$, we have

$$\int_{\mathfrak{T}'} \Theta_{\lambda}(f_0^* * f_0) |\pi(\lambda)|^2 d\lambda = \int_X |f(x)|^2 dx.$$

Under the assumption of this section, there exist several different types of discrete series on G_R . From the above equality, we may say that the number of the types of discrete series for G_R accords with the multiplicity of the continuous series for G_C/G_R .

§ 2. Principal series of G_c/G_R . Let $\Pi = \{j_1, j_2, \dots, j_m\}$ be a maximal set of Cartan subspaces of q not conjugate each other under $K \cap G$. For each j_i $(l=1,2,\dots,m)$, we put $\mathfrak{b}_i=\mathfrak{j}_i\cap\mathfrak{f}$ and $\mathfrak{a}_i=\mathfrak{j}_i\cap\mathfrak{p}$. Let $\mathfrak{l}_i=Z_{\mathfrak{g}_o}(\mathfrak{b}_i)$ and take \mathfrak{m}_i such that $\mathfrak{l}_i = \mathfrak{m}_i \oplus \mathfrak{j}_i$. Let $\Sigma^+(\mathfrak{b}_i)$ be the set of all positive roots of $(\mathfrak{b}_{l},\mathfrak{g}_{c})$, and let $\mathfrak{n}_{l} = \sum_{\alpha>0} \mathfrak{g}(\mathfrak{b}_{l},\alpha)$. The analytic subgroups of G_{c} according to l_i , m_i , j_i , b_i and n_i are denoted by L_i , M_i , J_i , B_i and N_i respectively. Then L_i is a linear complex connected reductive group and $P_i = M_i B_i N_i$ is a parabolic subgroup of G_c . If GP_i is a closed (resp. open) orbit in $G \setminus G_c$, it corresponds to the discrete (resp. continuous) series. The symmetric space $M_i/M_i\cap G$ has continuous series. Let W^* be the Weyl group of the pair $(\alpha_i, \mathfrak{m}_i)$. We choose a Weyl chamber \mathcal{G}_i in $i\alpha_i^*$. For $\lambda \in \mathcal{G}_i'$, let \mathcal{G}_λ^i be the invariant spherical distributions on $M_i/M_i \cap G$ given in § 1. Parametrize the discrete series ω by $(B_i \cap G \backslash B_i)^{\wedge}$ and define a Poisson kernel P_{ω} by $P_{\omega}(g) = \exp\left[(\rho - \omega)U(g)\right] \ \ ext{for} \ \ g^{-1} \in Gm(g) \cdot \exp\left[U(g) \cdot N_1(m(g) \in M_1 \cap G \setminus M_1, G)\right]$ $\exp U(g) \in B_i \cap G \setminus B_i$), $P_{\omega}(g) = 0$ for $g^{-1} \notin GP_i$. And we define invariant spherical distributions $\Theta_{\lambda,\omega}^l$ on X by

$$\Theta_{\lambda,\omega}^l(f) = \int_X \theta_{\lambda,\omega}^l(x) f(x) dx \qquad (f(x) \in C_c^{\infty}(X)),$$

where $\theta_{\lambda,\omega}^l(x) = \int_G \theta_{\lambda}^l(m(hx)) \ P_{\rho-\omega}(hx) dh$. We put $W_G^l = N_G(\mathfrak{j}_l)/Z_G(\mathfrak{j}_l)$ and W_l the Weyl group of the pair $(\mathfrak{j}_l,\mathfrak{g}_G)$. Let W_l^* be the subgroup of W_l generated by W^* and W_G^l . Denote by Π_l the set of all Cartan subspaces in Π obtained from \mathfrak{j}_l through Cayley transformations corresponding to imaginary roots of $\Sigma(\mathfrak{j}_l)$ and conjugations of $K \cap G$.

Proposition 2.1. For $\lambda \in \mathcal{D}'$ and $\omega \in (B_i \cap G \setminus B_i)^{\wedge}$, the distributions $\Theta_{\lambda,\omega}^l$ agree on $B_i \cap G \setminus B'_i$ with analytic functions which are given by

$$\Theta_{\lambda,\,\omega}^l|_{J_l\cap G\setminus J_l'} = egin{cases} rac{\sum_{w\in W_l^*} arepsilon(w)\,e^{w(\lambda,\,\omega)\,(X)}}{\pi(\lambda,\,\omega)\,\mathit{d}\,(\exp X)} & X\in\mathfrak{j}_l \ 0 & X\in\mathfrak{j}\,\,(\mathfrak{j}\in arPi\setminus arPi_l) \end{cases}$$

§ 3. Eisenstein integral. We define for the parabolic subgroup P_i = $M_iB_iN_i$, an integral as follows. For $\varphi \in C^{\infty}(M_i/M_i \cap G)$, extend it to a function on G_c by φ $(hwnbm) = \varphi(m)$. For $g \in G_c$, let B(g) denote the element of $(B_i \cap G) \setminus B_i$ given as $g \in Gw(g)N_iB(g)M_i$ $(B(g) \in (B_i \cap G) \setminus B_i$, $G_c =$ $\bigcup_{w \in W} GwP_i$). Then we define

$$E(P_t:\varphi:x) = \int_G \alpha(h)\varphi(xh) \exp(\rho - w)B(xh)dh, \text{ for } \alpha \in C_C^\infty(G).$$

We next consider the constant term on symmetric spaces. For P= $M_l B_l N_l$, let $P^d = M_l^d A_l^d N_l^d$ be the dual of P in G_c^d , then $M_l^d \cong M$, $N_l^d \cong N_l$. For the spaces

$$C^{\infty}(P/G) = \{ f \in C^{\infty}(X) : \text{supp } f \subset P_t/G \},$$

$$C^{\infty}(P^d/K^d) = C^{\infty}(G_C^d/K^d),$$

consider the isomorphism

$$\eta: C^{\scriptscriptstyle{\infty}}(P/G) \overset{\scriptscriptstyle{\mathrm{local}}}{\cong} C^{\scriptscriptstyle{\infty}}(P^d/K^d): f {
ightarrow} f^{\eta}.$$

And denote by η_i the analogous isomorphism in the case of M_i . $f \in \mathcal{A}(X)$, we define its constant term $f_P = \eta_l^{-1}(f_{Pd}^n)$ on $M_l/M_l \cap G$ by

$$\lim_{\stackrel{a\to\infty}{Pd}} \{d_{Pd}(am)f^{\eta}(am) - f^{\eta}_{Pd}(am)\} = 0.$$

Proposition 3.1. Let P and P' be parabolic subgroups whose compact Then there exist constants $c(s, \omega)$ $(s \in W(b))$ satisfying

$$E(P:\varphi:bm) = \sum_{s \in W(b)} (c(s,\omega)\varphi)(m)e^{s\omega(\log b)}.$$

§ 4. Plancherel formula. Here we discuss Plancherel formula by using the invariant spherical distributions $\Theta_{\lambda,\omega}^l$ defined in § 2. The Eisenstein integral corresponding to $\Theta_{\lambda, \omega}^{l}$ is given as follows:

Proposition 4.1. For $\lambda \in \mathcal{G}_i$ and $\omega \in (B_i/B_i \cap G)^{\wedge}$, we have $\langle \Theta_{\lambda,\omega}^l, l(x)f \rangle = E(P_l: \varphi_f: x)$

where, with
$$xh = h_0wn_0b_0m_0$$
,

$$\varphi_f = \int_{M_1/M_1\cap G} \int_{N_1\times (B_1/B_1\cap G)} \Theta_{\lambda}(m) \exp\{(\omega - \rho)(\log b)\}f(nbm_0m)dndb*dm*.$$

If we normalize the measures, we have the Plancherel formula as follows:

Theorem 4.2. For $f \in C_0^{\infty}(X)$, we have

$$\int_{X} |f(x)|^{2} dx = \sum_{l=1}^{m} \sum_{\omega \in (B_{l}/B_{l} \cap G) \wedge} \int_{\mathfrak{F}_{l'}} \langle \Theta_{\lambda, \omega}^{l}, f_{0}^{*} * f_{0} \rangle |\pi(\lambda, \omega)|^{2} d\lambda.$$
Outline of proof. For each $\Theta_{\lambda, \omega}^{l}$, we reduce it to the function on

 $M_1/M_1 \cap G$ by Proposition 4.1 and by taking its constant term. For the symmetric space $M_1/M_1 \cap G$, Proposition 1.2 holds. We decompose the space $C_c^{\infty}(X)$ according to each parabolic subgroup. We give Fourier inversion formulas associated to each part of the decompositions. get the Plancherel formula after combining these formulas.

References

- [1] Harish-Chandra: Harmonic analysis on real reductive groups. I, II and III. J. Func. Anal., 19, 104-204 (1975); Invent. Math., 36, 1-55 (1976); Ann. of Math., 104, 117-201 (1976).
- [2] S. Sano: Distribution sphériques invariantes sur l'espace semi-simple et son cdual. Lect. Notes in Math., no. 1243, Springer-Verlag, pp. 283-309 (1985).
- [3] —: Distributions sphériques invariantes de la série discrète sur l'espace symétrique semi-simple réel G_C/G_R . Sci. Papers College of Arts and Sciences, Univ. of Tokyo, **39**, 57-71 (1989).