
No. 7] Proc. Japa,n Acad., 65, Ser. A (199’0) 217

A Weak Convergence Theorem in Sobolev Spaces with
Application to Filippov’s Evolution Equations

By Toru MARUYAMA
Department ot Economics, Keio University
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1. Introduction. Let be a real sepa.rable Hilbert space. A cor-
respondence (--multi-valued ma.pping) F: [0, T]--g$ is assumed to
be given. A double arrow -- is used in order to indicate the domain
a.nd the range of a correspondence. The compact interval [0, T] is en-
dowed with the usual Lebesgue measure dr. The ta.rget of this pper is
to establish a sufficient condition which assures the existence of solutions
of a multi-valued differential equation of the form
( ) (t) e F(t, x(t)), x(0)=a,
where a is a fixed vector in .

In Ma.ruya.ma. [8], I ha.ve alrea.dy presented a. solution of this problem
in the special case o =R by making use o the convenient properties
of the weak convergence in the Sobolev space ,([0, T], R) consisting o
functions of [0, T] into R; i.e. if a sequence {x} in ’([0, T], R) weakly
converges to some x* e ,([0, T], R), then

xx* strongly in ([0, T], R), and

2--2" weakly in ([0, T], R).
However it is well-known that this property does not hold in the

space %,([0, T], ) consisting of functions of [0, T] into i dim
(Cf. Cecconi [5] pp. 28-29.) We shall first provide a. new tool to overcome
this difficulty in section 2, a.nd then proceed to the existence theorem or
the differential equation (.) in section 3.

2. A convergence theorem in ’([0, T], ). We denote by 8 (resp.
s)) the Hilbert space endowed with the strong (resp. weak) topology.

Theorem 1. Let be a real separable Hilbert space and consider a
sequence {xn} in the Sobolev space I’P([0, T], ) (pl). Assume that

(i) the set {x,(t)}:__ is bounded (and hence relatively compact)in

for each t e [0, T], and
(ii) there exists some function qp e p([0, T], (0, -t-c)) such that

llicn(t)ll(t) a.e.
Then there exists a subsequence {zn} of {x} and some x*e I’P([0, T],
such that

(a) zn--x* uniformly in on [0, T], and
(b) 2--2" weakly in ([0, T],
Proof. (a) To start with, we shall show the equicontinuity of {x}.

Since qr is integrable, there exists some/) 0 for each )> 0 such that
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]]X($)--X(S)l<--__ (r) dr <_-- +(r)dr<__ for all n

provided that It--s]<__,. This proves the equicontinuity of {x} in the
strong topology for . Hence (x) is also equicontinuous in the weak
topology for .

Taking account of this fact as well as the assumption (i), we can
claim, thanks to the Ascoli-Arzel theorem (cf. Schwa.rtz [12] p. 78), that
(x} is relatively compact in ([0, T], ) (the set of continuous functions
of [0, T] into ) with respect to the topology of uniform convergence.

By the assumption (i), {x(0)} is bounded in , say
sup x,(0)]] C <+.

And the assumption (ii) implies that

]]: (r)dr][g.[+".,., for all t e [0, T].

Hence

sup ,x(t),,=sup x(0)+I: 2(r)d
gC+[ for all t e [0, T].

Thus each x can be regarded as a. mapping of [0, T] into the set

The wea.k topology on M is metrizable because M is bounded a.nd is a
separable Hilbert space. Hence i we denote by M. the space M endowed
with the weak topology, then the uniform convergence topology on
([0, T], Mw) is metriza.ble.

Since we can regard {Xn} as a relatively compact subset of ([0, T],
M,), there exists a subsequence {Yn} Of {X} which uniformly converges to
some x* e ([0, T], .).

(b) Since
(t)g(t) a.e.,

the sequence {w" [0, T]} defined by

w(t)- (t) n=, 2,
+(t)

is contained in the unit ball of ([0, T], ) which is weak*-compact by
Alaoglu’s theorem. Note that the weak*-topology on the unit ball o

([0, T], ) is metriza.ble since ([0, T], ) is separable. Hence
has a, subsequence {w,} which converges to some w* e ([0, T], ) in the
weak*-topology. We shall write 2=,=.w,.

If we define an operator A" 2([0, T], )([0, T], ) by
A" g: >.g,

then A is continuous in the weak*-topology for and the weak-topology
or 2. In order to see this, let {g} be a net in 2([0, T], ) such that
w*-lim g g* e ([0, T], ); i.e.
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Then it is quite easy to verify that: ((t), (t)g(t)}.dt= ((t)(t), g(t)}dt--: ((t)(t), g*(t)}dt

or all fl e q([0, T], ), 1/p+1/q= 1
since . fl e ([0, T], ). This proves the continuity of A.

Hence
( 1 ) 2=.w,-+,w* weakly in ([0, T], ),
which implies

(2) <0, (r)dr>= (0, ()}dr-+ (0, (r).w*()}dr or all0e .
On the other hand, since

Z(t)--Zn(8)--’.[: 2n(v)dv for all n
and z(t)--z(s)*(t)-x*(s) in @, we get

(3) <O,,(r)dr>=<O,z(t)--z(s)>--<O,x*(t)--x*(s)} for all 0e.
(2) and (3) imply that

<O,x*(t)--x*(s)>=<O,().w*(r)dr> for a.ll 0 e ,
from which we can deduce the equality

(4) x*(t)--x*(s)=fl ().w*(r)dr.
By (1) and (4), we get the desired result:

2-*=.w* .weakly in ([0, T], ). Q.E.D.
In the proof of our Theorem 1, we are ma.king use of some ideas of

Aubin and Cellina [4] (pp. 13-14). However their reasoning does not seem
to be perfectly sound.

:. Multi-valued differential equation (.). Let us begin by specify-
ing some assumptions imposed on the correspondence F [0, T] --.
Special attentions, should be paid to the act that the topology on the
domain is the weak one and the range is. endowed :with the strong topology.

Assumption 1. F is compact-convex-valued; i.e. F(t, x) is a non-
empty, compact and convex subset of for all t e [0, T] and all x e .

Assumption 2. The correspondence x---F(t, x) is upper hemi-con-
tinuous (abbreviated as u.h.c.) for each fixed t e [0, T]; i.e. for any fixed
(t, x) e [0, T] . and for any neighborhood V of F(t, x), there exists
some neighborhood U of x such that F(t, z)V for all z e U.

Assumption :. The correspondence tF(t, x) is measurable for
each fixed x e i.e. the weak inverse image F-’(U)={t e [0, T] IF(t, x) U
:/:} is measurable for all open sets U in and for each fixed x e . (For
the concept of "measurability" of a. correspondence, see Castaing-Va.la.dier
[4] Chap. III or Maruyam [9] Chap. 7-8.)

Assumption 4. There exists e ([0, T], (0, + c)) such that F(t, x).
S,( for every (t, x) e [0, T] , where S,() is the closed ball in with the
center 0 and the radius (t).
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Remark. Among other things, the assumption that the set F(t, x) is
alwa.ys convex is seriously restrictive, especially rom the viewpoint of
applications. However there seems to be no easy way to wipe out the
convexity assumption. (See De Blasi [6].)

We are now going to find out a. solution of (.) in the Sobolev space
,([0, T], ). Define a. set z/(a) in %, by

z/(a)={x e ’l x satisfies (,) a.e.}
for a. fixed a e . The following theorem tells us tha.t z/(a):/: and that z/

depends continuously, in some sense, upon the initial value a.
Theorem 2. Suppose that F satisfies Assumptions 1-4, and let A be a

non-empty, convex and compact subset of . Then
(i) z/(a*):/:O for any a* e A, and
(ii) the correspondence 21: A,>%’ is compact-valued and u.h.c, on

A, in the wealc topology for ?,.
Outline of Proof. (I) I we define a subset 5 o the Sobolev space

’([0, T], ) by
--{x e ’2111 2(t)ll +(t) a.e. and x(0) e A},

then 5 is a non-empty, convex a.nd weakly compact subset of %,. We
can also show that the set

H-- ((a, x, y) e A l(t) e F(t, x(t)) a.e. and x(O)---y(O)=a}
is weakly compact in A5. This fact, the proof of which is based
upon Theorem 1, provides a crucial key for the proof of Theorem 2.

(II) Fix any a* e A. If we define a set 5’5 by ’={x e 51x(0)=a*},
then ’ is. convex and weakly compact in %’. Furthermore we define a
correspondence #: ’---’ by

#(x)={y e ’ (t) e F(t, x(t)) a.e.}.
Then the problem is simply reduced to finding out a, fixed point of .
1 #(x):/:O for every x e 5’. This fact can. be proved through

the Measurable Selection Theorem (cf. Casta.ing-Valadier [3] Chap. III or
Maruyama. [9] Chap. 7).

2 is convex-compact-valued. This is not hard.
3 # is u.h.c. If we define the a*-section H, of H by H,=

{(a,x, y) eHla=a*}, then H, is obviously weakly compact in A55.
And the graph G(q)) of is expressed as G()=proj H,, the projection
of H, into 5 , which is also closed.

Summing up - is convex-compact-valued and u.h.c. Applying
now Ky Fan’s Fixed-Point Theorem (Fan [7]) to the correspondence ,
we obtain an x* e ’ such that x* e (x*) i.e.

2*(0 e F(t, x*(t)) a.e. and x*(0)=a*.
This proves (i).

(III) Since the compactness of z/(a) can be verified by applying
Mazur’s theorem and making use of Assumptions 1-2, we may omit the
details. Hence we have only to show the u.h.c, of z/. However it is
also obvious because the graph G(z/) of z/can be expressed as
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G(z/) =projA {(a, x, y) e H x=y},
which is closed in A . Q.E.D.

I am much indebted to Castaing-Valadier [3] 2or various important
ideas embodied in the proo o Theorem 2. See also Maruyama [10] or
details.

Here it may be suggestive or us to glimpse the special case in which
F is a (single-valued) mapping.

Corollary 1. Let f" [0, T]w-s be a (single-valued) mapping
which stisfies the following three conditions.

( The function x-f(t, x) is continuous for each fixed t e [0, T].
(ii) The function t.-f(t, x) is measurable for each fixed x e .
(iii) There exists e$:2([0, T], (0, +c)) such that f(t, x)eS,(t)for

every (t, x)e [0, T]; i.e. supxellf(t, x)ll=(t) for all te [0, T].
Then the differential equation
(**) 2--f(t, x), x(O)= a (fixed vector in )
has at least a solution in ,([0, T], ). (A solution of (**) is a unction
x e’ which satisfies (**) a.e.)
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