52. A Note on p-valently Bazilević Functions

By Shigeyoshi Owa*) and Rikuo Yamakawa**)

(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1990)

1. Introduction. Let $\mathcal{A}(p)$ be the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \quad(p \in \mathscr{N}=\{1,2,3, \cdots\}) \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disk $\mathcal{C}=\{z:|z|<1\}$. A function $f(z)$ in $\mathcal{A}(p)$ is said to be p-valently starlike in \cup if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0 \quad(z \in \mathcal{U}) \tag{1.2}
\end{equation*}
$$

We denote by $\mathcal{S}^{*}(p)$ the subclass of $\mathcal{A}(p)$ consisting of all p-valently starlike functions in V.

A function belonging to $\mathcal{A}(p)$ is said to be a member of the class $\mathcal{B}(p, \alpha)$ if there exists a function $g(z) \in \mathcal{S}^{*}(p)$ such that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z) f(z)^{\alpha-1}}{g(z)^{\alpha}}\right\}>0 \tag{1.3}
\end{equation*}
$$

for some $\alpha(\alpha>0)$ and for all $z \in \mathscr{U}$. Then, we note that $\mathscr{B}(p, \alpha)$ is the subclass of p-valently Bazilevic functions in the unit disk \mathcal{U}. In particular, the class $\mathcal{B}(1, \alpha)$ when $p=1$ was studied by Singh [3], and by Obradović ([1], [2]).
2. Main result. In order to derive our result, we need the following lemma due to Obradović [2].

Lemma. If $f(z) \in \mathcal{B}(1, \alpha), \alpha>0$, then the function $F(z)$ defined by

$$
\begin{equation*}
F(z)^{\alpha}=\frac{\alpha+1}{z} \int_{0}^{z} f(t)^{\alpha} d t \quad(z \in U) \tag{2.1}
\end{equation*}
$$

is also in the class $\mathscr{B}(1, \alpha)$.
An application of the above lemma leads to
Main result. If $f(z) \in \mathscr{B}(p, \alpha), \alpha>0$, then the function $H(z)$ defined by

$$
\begin{equation*}
H(z)^{\alpha}=\frac{p \alpha+1}{z} \int_{0}^{z} f(t)^{\alpha} d t \quad(z \in \mathscr{U}) \tag{2.2}
\end{equation*}
$$

is also in the class $\mathscr{B}(p, \alpha)$.
Proof. We note that $f(z) \in \mathscr{B}(p, \alpha)$ implies that there exists a function $g(z) \in \mathcal{S}^{*}(p)$ such that

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z) f(z)^{\alpha-1}}{g(z)^{\alpha}}\right\}>0 \quad(z \in \mathscr{U})
$$

Letting $f(z)=f_{1}(z)^{p}, g(z)=g_{1}(z)^{p}$, and $H(z)=H_{1}(z)^{p}$, we have

[^0]\[

$$
\begin{equation*}
\frac{z f^{\prime}(z) f(z)^{\alpha-1}}{g(z)^{\alpha}}=p \frac{z f_{1}^{\prime}(z) f_{1}(z)^{p \alpha-1}}{g_{1}(z)^{p_{\alpha}}} \tag{2.3}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
H_{1}(z)^{\alpha}=\frac{\alpha+1}{z} \int_{0}^{z} f_{1}(t)^{\alpha} d t \tag{2.4}
\end{equation*}
$$

Therefore, it follows from (2.3), (2.4), and Lemma that

$$
\begin{aligned}
f(z) \in \mathscr{B}(p, \alpha) & \Longleftrightarrow f_{1}(z) \in \mathscr{B}(1, p \alpha) \\
& \Longleftrightarrow H_{1}(z) \in \mathscr{B}(1, p \alpha) \\
& \Longleftrightarrow H(z) \in \mathscr{B}(p, \alpha) .
\end{aligned}
$$

This completes the assertion of our main theorem.
Taking $\alpha=1 / p$ in our theorem, we have
Corollary. If $f(z) \in \mathscr{B}(p, 1 / p)$, then the function $H(z)$ defined by

$$
\begin{equation*}
H(z)^{1 / p}=\frac{2}{z} \int_{0}^{z} f(t)^{1 / p} d t \quad(z \in \mathcal{U}) \tag{2.5}
\end{equation*}
$$

is also in the class $\mathscr{B}(p,(1 / p))$.

References

[1] M. Obradovic: Estimates of the real part of $f(z) / z$ for some classes of univalent functions. Mat. Vesnik, 36, 266-270 (1984).
[2] --: Some results on Bazilević functions. ibid., 37, 92-96 (1985).
[3] R. Singh: On Bazilević functions. Proc. Amer. Math. Soc., 38, 261-271 (1973).

[^0]: *) Department of Mathematics, Kinki University.
 **) Department of Mathematics, Shibaura Institute of Technology.

