43. q-analogue of de Rham Cohomology Associated with Jackson Integrals. I

By Kazuhiko A0M0T0 Department of Mathematics, Nagoya University

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1990)

In this note we want to give a new formulation of Jackson integrals involved in basic hypergeometric functions through the classical Barnes' representations. We define a q-analogue of de Rham cohomology which can be formulated by means of q-version of Sato's b-functions and derive associated holonomic q-difference system. The evaluation of its multiplicity will be given as a number of different asymptotics.

1. Structure of b-functions. We take the elliptic modulus $q=e^{2\pi i\tau}$, Im $\tau>0$. Let X be an n dimensional integer lattice $\simeq Z^n$. We put $\overline{X}=X\otimes C^*$, the n dimensional algebraic torus twisted by q. Let $\chi_1, \chi_2, \dots, \chi_n$ be a basis of X such that an arbitrary $\chi \in X$ can be uniquely written by $\chi=\sum_{j=1}^n \nu_j \chi_j, \nu_j \in Z$. We may identify \overline{X} isomorphic to $X\otimes (C/(2\pi i/\log q))$ with the direct product of n pieces of C^* . The inclusion $X\subset \overline{X}$ can be obtained by identifying χ_j with the element $t=(1, \dots, 1, q, 1, \dots, 1) \in (C^*)^n$. We denote by Q_j the shift operator $Q_j f(t)=f(\chi_j \cdot t)$ induced by the displacement $t \rightarrow \chi_j \cdot t$ for a function f on \overline{X} . We put $Q^{\chi}=Q_1^{\nu_1}\cdots Q_n^{\nu_n}$. We consider the q-difference equations

(1.1) $Q^{\chi} \boldsymbol{\Phi}(t) = b_{\chi}(t) \boldsymbol{\Phi}(t), \quad \chi \in X \text{ and } t \in \overline{X},$

for a set of rational functions $\{b_x(t)\}_{x \in X}$, on \overline{X} , which are not identically zero. $\{b_x(t)\}_{x \in X}$ satisfies the compatibility condition

(1.2) $b_{\chi+\chi'}(t) = b_{\chi}(t) \cdot Q^{\chi} b_{\chi'}(t),$

so that $\{b_{\mathfrak{x}}(t)\}_{\mathfrak{x}\in\mathfrak{x}}$ defines a 1-cocycle on X with values in $R^{\times}(\overline{X})$ the multiplicative abelian group consisting of non-zero rational functions on \overline{X} . We denote by $R(\overline{X})$ the field of rational functions on \overline{X} . $\{b_{\mathfrak{x}}(t)\}_{\mathfrak{x}\in\mathfrak{x}}$ is a coboundary if and only if $b_{\mathfrak{x}}(t) = Q^{\mathfrak{x}}\varphi(t)/\varphi(t)$ for $\varphi \in R^{\times}(\overline{X})$. We write the corresponding 1-cohomology by $H^1(X, R^{\times}(\overline{X}))$.

We put $(x)_{\infty} = \prod_{\nu=0}^{\infty} (1-xq^{\nu})$ and $(x)_n = (x)_{\infty}/(xq^n)_{\infty}$ for $n \in \mathbb{Z}$. Then the following important result holds.

Proposition. An arbitrary cocycle $\{b_{\mathfrak{x}}(t)\}_{\mathfrak{x}\in\mathfrak{X}}$ modulo a coboundary can be expressed by (1.1), where $\boldsymbol{\Phi}$ denotes a q-multiplicative function on \overline{X} written by

(1.3)
$$\mathbf{\Phi} = \prod_{j=1}^{n} t_j^{\alpha_j} \prod_{j=1}^{m} \frac{(a'_j t^{\mu_j})_{\infty}}{(a_j t^{\mu_j})_{\infty}}$$

for some non-negative integer m and α_j , a'_j , $a_j \in C$, and for $\mu_j \in \check{X} = \operatorname{Hom}(X, Z)$. Z). t^{μ_j} denotes a monomial $t_1^{\mu_j(\chi_1)} \cdots t_n^{\mu_j(\chi_n)}$. a_j or a'_j may vanish or may not. This is a q-version of Sato's theorem in [6] and can be proved in a completely similar way (see the appendix in [6]).

We shall assume from now on that any of a_j and a'_j don't vanish. If we replace μ_j , $a_j = q^{s_j}$ and $a'_j = q^{s'_j}$ by $-\mu_j$, qa'_j^{-1} and qa_j^{-1} respectively in the factors of Φ , then

(1.4)
$$T_{j} \Phi = t^{(s_{j} - s'_{j})\mu_{j}} \frac{(qa_{j}^{-1}t^{-\mu_{j}})_{\infty}(a_{j}t^{\mu_{j}})_{\infty}}{(a'_{j}t^{\mu_{j}})_{\infty}(q^{-1}a'_{j}^{-1}t^{-\mu_{j}})_{\infty}} \Phi$$

also satisfies the same equation (1.1) and may replace Φ if necessary.

It is convenient to write $\mu_{-j} = -\mu_j$, $a'_{-j} = qa_j^{-1}$, $a_{-j} = qa_j^{-1}$ for $j \in \{\pm 1, \dots, \pm m\}$. We also put $u_j = q^{\alpha_j}$.

We denote by $\mathcal{L} = C[t_1, t_1^{-1}, \dots, t_n, t_n^{-1}]$ the Laurent polynomial ring in t. The function $b_{\chi}(t)$ can be expressed by $u^{\chi}(b_{\chi}^+(t)/b_{\chi}^-(t))$ for $u^{\chi} = u_1^{\mu_1} \cdots u_n^{\mu_n}$ and $b_{\chi}^{\pm}(t) \in \mathcal{L}$, where $b_{\chi}^{\pm}(t)$ denote

(1.5) $b_{\chi}^{+}(t) = \prod_{\mu_{j}(\chi)>0}^{\mu} (a_{j}t^{\mu_{j}})_{\mu_{j}(\chi)} \cdot \prod_{\mu_{j}(\chi)<0}^{\mu} (a_{j}'q^{\mu_{j}(\chi)}t^{\mu_{j}})_{-\mu_{j}(\chi)},$ (1.6) $b_{\chi}^{-}(t) = \prod_{\mu_{j}(\chi)>0}^{\mu} (a_{j}'t^{\mu_{j}})_{\mu_{j}(\chi)} \cdot \prod_{\mu_{j}(\chi)<0}^{\mu} (a_{j}'q^{\mu_{j}(\chi)}t^{\mu_{j}})_{-\mu_{j}(\chi)},$ respectively.

2. Jackson integral and q-analogue of de Rham cohomology. We denote by $\varpi = d_q t_1 / t_1 \wedge \cdots \wedge d_q t_n / t_n$ the canonical invariant *n*-form on \overline{X} . We consider the Jackson integral $\tilde{f} = \int_{X \cdot \xi} f \varpi$ for a function f on \overline{X} over an orbit $X \cdot \xi$, $\xi \in \overline{X}$ as follows:

(2.1)
$$\tilde{f} = (1-q)^n \sum_{x \in x} Q^x f(\xi),$$

if it is summable. We denote by $\langle \varphi \rangle$ the Jackson integral $\widetilde{\varphi \varphi}$. Then by definition, we have the equality $\tilde{f} = \widetilde{Q^{z} f}$ which is independent of the choice of the point ξ . If $f = \Phi \varphi$, $\varphi \in R(\overline{X})$, then

(2.2) $\langle \varphi - b_{\chi} \cdot Q^{\chi} \varphi \rangle = 0, \quad \chi \in X.$ In particular,

(2.3)

 $\langle \varphi - b_{x_j} \cdot Q_j \varphi \rangle = 0, \qquad 1 \leq j \leq n.$

Definition 1. The operators $\nabla_j = 1 - b_{x_j}Q_j$, $1 \le j \le n$, define a covariant q-differenciation ∇ on \overline{X} . They commute each other:

(2.4) $\nabla_j \nabla_k = \nabla_k \nabla_j$, $1 \le j$, $k \le n$, because of the compatibility condition for $\{b_z(t)\}_{z \in x}$. It should be noted that this gives a *q*-analogue version of ordinary integrable covariant differentiations investigated in [4] (see also [1]).

Definition 2. We denote by $Q_{u_j}^{\pm 1} = \tilde{Q}_j^{\pm 1}$, $Q_{a_j}^{\pm 1}$ and $Q_{a_j}^{\pm 1}$ the operators for a function of u_j , a_j and a'_j induced by the displacements $u_j \rightarrow u_j q^{\pm 1}$, $a_j \rightarrow a_j q^{\pm 1}$ and $a'_j \rightarrow a'_j q^{\pm 1}$ respectively, i.e. $Q_{u_j}^{\pm 1} \Phi = t_j^{\pm 1} \Phi$, $1 \le j \le n$; $Q_{a_j} \Phi = (1 - a_j t^{\mu_j}) \Phi$, $Q_{a'_j} \Phi = (1 - a'_j t^{\mu_j})^{-1} \Phi$, $Q_{a'_j} \Phi = (1 - a'_j t^{\mu_j})^{-1} \Phi$, $1 \le j \le m$ respectively.

Let \mathcal{A} be the commutative algebra over C of operators generated by $Q_{a_j}^{\pm 1}, Q_{a_j}^{\pm 1}$ and $Q_{a'_j}^{\pm 1}$. We define the subspace V of $R(\overline{X})$ as follows:

(2.5) $V = \{A \boldsymbol{\Phi} / \boldsymbol{\Phi} \mid A \in \mathcal{A}\}.$

Then the space $\boldsymbol{\Phi} \cdot V$ is left invariant under \mathcal{A} . Moreover V is invariant under the covariant q-differenciation ∇^{χ} , $\chi \in X$. V contains \mathcal{L} . It is actually spanned by the rational functions φ q-analogue of de Rham Cohomology

(2.6)
$$\varphi = \frac{\overline{\varphi}}{\prod_{j=1}^{m} (a'_j t^{\mu_j})_{l'_j} \cdot \prod_{j=1}^{m} (a_j q^{-i_j} t^{\mu_j})_{l_j}}, \quad \overline{\varphi} \in \mathcal{L},$$

for $l_j \ge 0$ and $l'_j \ge 0$. The space $\Phi \cdot V$ is left invariant under the covariant q-differenciation V^{z} . This suggests us to define the following Koszul complex:

Definition 3. (q-analogue of de Rham complex). We put $\Omega = \sum_{r=0}^{n} \Omega^{r}$, for $\Omega^{r} = \wedge^{r} \check{X} \otimes V$. Let e_{1}, \dots, e_{n} be a basis of \check{X} and $e_{i_{1}} \wedge \dots \wedge e_{i_{r}}$ be a basis of $\wedge^{r} \check{X}$. An arbitrary element of Ω^{r} can be represented by $\{\varphi_{i_{1}\dots i_{r}}\}_{i_{1} < \dots < i_{r}}$ through $(e_{i_{1}} \wedge \dots \wedge e_{i_{r}}) \otimes \varphi_{i_{1}\dots i_{r}} \in \Omega^{r}$, $\varphi_{i_{1}\dots i_{r}} \in V$. The boundary operation from Ω^{r} into Ω^{r+1} is given by

(2.7) $(\nabla \varphi)_{i_1, \dots, i_{r+1}} = \sum_{\nu=1}^{r+1} (-1)^{\nu-1} \nabla_{i_\nu} \varphi_{i_1, \dots, i_{\nu-1}, i_{\nu+1}, \dots, i_{r+1}}.$

Then we have $\nabla^2 = 0$, because of (2.4). Hence we can define its cohomology $H^*(\Omega, \nabla) = \sum_{r=0}^n H^r(\Omega, \nabla)$. In particular we have the *n*-th cohomology $H^n(\Omega, \nabla)$ which is isomorphic to

(2.8) $V / \sum_{j=1}^{n} (1 - b_{x_j} Q_j) V = V / \sum_{x \in x} (1 - b_x Q^x) V.$

It is important to note that $\langle \varphi \rangle$ vanishes for $\varphi \in \nabla \Omega^{n-1}$ by (2.2).

Under these circumstances we may pose the following questions:

Q 1. Is dim $H^*(\Omega, \nabla) < \infty$?

Q 2. What is the dual of $H^*(\Omega, \nabla)$? Is it constructed in a geometric way as a family of countable sets in \overline{X} ? If they exist, we may call them *q*-cycles.

Q 3. Do $H^r(\Omega^{\bullet}, \nabla)$ vanish for all r < n?

Q 4. What is the Euler number $\sum_{r=0}^{n} (-1)^r \dim H^r(\Omega, \nabla)$?

Under suitable assumptions one may conjecture that it is equal to $(-1)^n \kappa$, for

(2.9) $\kappa = \sum_{i_1 < i_2 < \cdots < i_n} [\mu_{i_1}, \cdots, \mu_{i_n}]^2,$

where $[\mu_{i_1}, \dots, \mu_{i_n}]$ denotes the determinant det $(\mu_{i_r}(\chi_s))_{1 \leq r,s \leq n}$ of the i_1, \dots, i_n th elements among μ_1, \dots, μ_m .

If Q3 and Q4 are affirmative, then dim $H^n(\Omega, \nabla) = \kappa$.

3. Holonomic q-difference equations. We fix a generic $\eta \in X$. $\tilde{\Psi}$ is quasi-meromorphic in $u \in (C^*)^n$ and satisfies the system of linear q-difference equations (\mathcal{E}) :

(3.1) $(b_{\tilde{\chi}}^{-}(\tilde{Q})u^{-\chi}-b_{\tilde{\chi}}^{+}(\tilde{Q}))\tilde{\Phi}=0, \quad \text{for } \chi \in X.$

This is equivalent to the subsystem (\mathcal{E}^*) :

(3.2) $(b_{\chi}^{-}(\tilde{Q})u^{-\chi}-b_{\chi}^{+}(\tilde{Q}))\tilde{\Phi}=0, \quad \text{for } \chi \in X,$ such that $(\eta, \chi) > 0.$

If $ilde{\Phi}$ has an asymptotic behaviour

(3.3)
$$\tilde{\boldsymbol{\varphi}} \sim u_1^{\lambda_1} \cdots u_n^{\lambda_n} \left(1 + O\left(\frac{1}{N}\right) \right),$$

for $\alpha = \eta N + \alpha'$, $N \rightarrow +\infty$, then q^{λ} must satisfy

(3.4) $b_{\chi}(q^{\lambda-\chi})=0$, for each χ such that $(\eta, \chi)>0$.

Assume that all the zeros of (3.4) are isolated in \overline{X} and X-inequivalent to each other. Then their number equals κ and there exist κ asymptotic

163

No. 7]

solutions of (\mathcal{E}) . These are given by the Jackson integrals $\tilde{\varphi}$ over certain q-cycles containing each q^{λ} .

The system (\mathcal{E}) consists of an infinite number of equations which contain redundant ones of the form (3.1). We can reduce them by using the following

Lemma. Fix χ' and $\chi'' \in X$. Assume $\mu_i(\chi')\mu_i(\chi'') > 0$ for all j. Then an arbitrary quasi-meromorphic function f of $u \in \check{X} \otimes C^*$ satisfying (3.1) with $\chi = \chi'$ and χ'' satisfies (3.1) too with $\chi = \chi' + \chi''$.

Indeed then $b_{x+x'}^{\pm}(t) = b_{x}^{\pm}(t) \cdot Q^{x} b_{x'}^{\pm}(t)$.

Our problem is intimately related to the torus embeddings (see [5]). Let F be a fan divided by hyperplanes $H_j: \mu_j(\omega) = 0, \ \omega \in X_R$ for $X_R = X \otimes R$. F consists of rational polyhedral cones σ given by the connected components of the complement $X_{\mathbf{R}} - \bigcup_{j=1}^{m} H_{j}$. It is known that F corresponds to a torus embedding $T_{emb}(F)$ which is a compactification of the algebraic torus \overline{X} . There exists a fan F^* which is a simplicial subdivision of F such that each cone composing F^* is generated by a basis of X. It is known that the torus embedding $T_{emb}(F^*)$ gives a desingularization of $T_{emb}(F)$ and vice versa. We denote by Y the set of corner elements generating rational polyhedral cones in F^* . Then (\mathcal{E}^*) are equivalent to the system of a finite number of q-difference equations (\mathcal{E}_{Y}^{+}) :

 $(b_{x}^{-}(\tilde{Q})u^{-x}-b_{x}^{+}(\tilde{Q}))\tilde{\Phi}=0,$ (3.5)

for $\chi \in Y$ such that $(\eta, \chi) > 0$. Then we have

Theorem. $\tilde{\Psi}$ satisfies the system of q-difference equations (\mathcal{E}_{Y}^{+}) . (\mathcal{E}_{Y}^{+}) has κ linearly independent solutions which have asymptotic behaviours (3.3) satisfying (3.4) in a generic direction $\eta \in X$. These solutions are given by the Jackson integrals over κ q-cycles containing q³ satisfying (3.4).

In the second part, under more restrictive conditions, we shall construct such κ q-cycles and show that dim $H^n(\Omega, V)$ equals κ , by using the notions of q-analogue of stable cycles, Newton polyhedra and torus embeddings.

Acknowledgements. We are indebted to Profs. T. Oda and M. Oka for valuable suggestions and communications.

References

- K. Aomoto: Les équations aux différences linéares et les intégrales des fonctions multiformes. J. Fac. Sci. Univ. Tokyo, 22, 271-297 (1975).
 —: A note on holonomic q-difference systems. Algebraic Analysis. I (eds. M. Kashiwara and T. Kawai). pp. 25-28 (1988).
 [3] —: Finiteness of a cohomology associated with certain Jackson integrals (to appear in Tohoku J. of Math.).
 [4] P. Deligne: Equations différentielles à points réguliers singuliers. Lect. Notes in Math., no. 163, Springer (1970).
 [5] T. Oda: Convex bodies and algebraic geometry. An introduction to the theory of toric varieties. Ergebnisse der Math., Springer (1988).
 [6] M. Sato: Theory of prehomogeneous vector spaces, Algebraic part (The English version translation of Sato's lecture from Shintani's note, translated by M. Muro) (to appear in Nagoya J. Math.).
 [7] L. J. Slater: Generalized Hypergeometric Functions. Cambridge Univ. Press. (1966).